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The main subject of the paper is an escape from a multiwell metastable potential
on the timescale of the formation of the quasiequilibrium between the wells. Our
main attention is devoted to such ranges of friction in which an external saddle
does not belong to a basin of attraction of an initial attractor. A complete
rigorous analysis of the problem for the most probable escape path is presented
and a corresponding escape rate is calculated with a logarithmic accuracy.
Unlike a conventional rate for a quasistationary flux, the rate on shorter time-
scales strongly depends on friction, moreover, it may undergo oscillations in
the underdamped range and a cutoff in the overdamped range. A generalization
of the results for interattractor transitions in stable potentials with more than
two wells is also presented, and a splitting procedure for a phenomenological
description of interattractor transitions is suggested. Applications to such
problems as the dynamics of escape on timescales shorter than an optimal fluc-
tuation duration, the prehistory problem, the optimal control of fluctuations,
fluctuational transport in ratchets, escapes at a periodic driving, and transitions
in biased Josephson junctions and ionic channels are briefly discussed.

KEY WORDS: Large fluctuation; multiattractor system; master equation;
probability flux; first-passage problem; Kramers problem; variational problem;
most probable direct transition path; action; detailed balance; time-reversed
path; saddle connection.

1. INTRODUCTION

The problem of rare fluctuational transitions in a classical system driven by
a weak noise attracts an attention of theorists for more than half a century
(for a historical review see, e.g., ref. 1). Its treatment in a contemporary

609

0022-4715�99�1100-0609�16.00�0 � 1999 Plenum Publishing Corporation

1 Institute of Semiconductor Physics, National Ukrainian Academy of Sciences, Kiev,
Ukraine.



form should be counted probably from the celebrated work by Kramers(2)2

in which, in particular, the noise-induced escape from a metastable potential
well was considered. The principal result by Kramers is that, after a short
initial period during which a quasi-stationary distribution forms within the
well, the probability flux from it is an exponentially decaying function:

J=:e&:t (1.1)

where the escape rate : contains, appart from the Arrhenius factor(4)

exp(&2U�T ) (2U is a height of the potential barrier and T is a tem-
perature), a preexponential factor which relatively weakly depends on T,
friction 1 and some details of a potential U(q)

:=A(T, 1, [U ]) exp \&
2U
T + , T<<2U (1.2)

and Kramers derived explicit asymptotic formulas for A in the ultra-under-
damped and moderate-to-overdamped limits.

I do not have a room here to review all developments and generaliza-
tions of the Kramers problem (surveys of the state of art, at least by the
end of 80th, are given in major reviews(5, 6)). Rather I shall mention just
two activities which are quite relevant to the subject of my paper.

One of them concerned the problem of filling the ``gap'' between the
ultra-underdamped and moderate-to-overdamped limits for the expression
of the preexponential factor A. This activity was crowned by the work by
Melnikov(7) (see also the review(6) and references therein) who developed
a very beautiful method based on the reduction of the Fokker�Plank equa-
tion, in the underdamped regime, to some more simple integral equation
which, in its turn, was solved by the Wiener�Hopf method. We draw atten-
tion of a reader to that fact that, in all friction ranges, a dependence of the
escape rate on friction is much weaker than exponential.(6)

However all these works considered only a quasi-stationary flux.
A natural question is: how does an escape flux evolve from zero at the
initial instant to its quasi-stationary value at time-scales greatly exceeding
a time of a formation of the quasi-equilibrium within the metastable part
of the potential? There were few works on this problem, (8�10) but they all
concerned only a single-well case: the quasi-equilibrium is established in
this case quickly (for a time of the order of a characteristic relaxation time
in the well).
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In contrast, the formation quasi-equilibrium in a multi-well metastable
potential takes an exponentially longer time. Indeed, the formation has two
essentially different stages in this case: the first stage, during which quasi-
equilibrium forms within the initial well, is short (similar to that one in
a single-well case) while the second stage, when an equilibrium between
different wells forms, is exponentially longer. Escapes for these two stages
occur quite differently. The present paper considers an escape3 flux just in
the second stage. It should be emphasized that, at small temperatures, just
this stage is most relevant to real situations since the first stage ends very
quickly (its duration depends on temperature logarithmically while the
second stage duration increases exponentially sharply as temperature
decreases) while larger time-scales, related to the quasi-stationary stage,
may exceed significantly an observation�experiment time.

A duration of an escape�transition is typically much smaller than a
time during which a system waits for the escape�transition(11) so that the
transition process may be considered at the relevant time-scales as an
instantaneous one while a noise-driven multi-stable system on the whole
may be described as a Markov chain, (11) i.e., within an approximation of
master equations for populations of attractors, with constant transition
rates :ij between states i and j (attractors or an unstable region).

Figure 1 illustrates schematically an escape from a double-well meta-
stable potential. If the system stays initially in 1 then, on time-scales
preceding the formation quasi-equilibrium between wells 1 and 2, escapes
occur most probable directly, i.e., without relaxing into the bottom of the
well 2, so that the flux at such time-scales is equal to :13 which may drasti-
cally differ from the quasi-stationary flux.

A rate of a transition�escape flux over more than one barrier, e.g., such
as :13 , cannot be generally described by the Melnikov method, as it was
recognized yet by Melnikov himself.(6) Instead, use for their description
the concept of optimal large fluctuation. Not only it provides a calculation
of escape�transition rates but also allows to find a trajectory along which
escapes�transitions occur with an overwhelming probability. The concept of
optimal large fluctuation dates back to 50th�60th(12�14) but the outburst
of the interest to it falls onto the last decade which, apart from the logic
of its own scientific development, is probably due to numerous recently
appeared subjects related to large fluctuations and suggesting interesting
applications in physics, biology, engineering, etc. These are first of all:
stochastic resonance (see for recent reviews refs. 15 and 16, and references
therein), noise-induced transport in ratchets (e.g., refs. 17�22), optimal
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Fig. 1. A double-well metastable potential and schematically shown ``direct'' transitions:
1 � 3 (dotted line) and 1 � 2, 2 � 1, 2 � 3 (dashed lines).

control of fluctuations (e.g., refs. 23 and 24). A few hundreds papers on
these subjects have been published for the last decade. As concers the
problem of large fluctuations itself, it was treated by various methods:
direct probabilistic methods (see refs. 14 and 11 and references therein),
eikonal approximation of the Fokker�Plank equation (e.g., refs. 25�29) and
the path-integral method (e.g., refs. 30�34 and 22�24). Usually, the primary
aim of all these methods is to derive an exponent in the most strong
(activation-like) factor in the dependence of a transition rate on tempera-
ture (or any other quantity characterizing noise intensity):

:tr B exp \&
S
T + , T<<S (1.3)

where S is an action of the Onsager�Muchlup type(12) taken along an
optimal path of a fluctuational transition. For the escape from a single
potential well, the most probable escape path is the time-reversal of the
relaxational trajectory from the saddle to the bottom of the well (see, e.g.,
ref. 26) which obviously provides that same Arrhenius factor in (1.2).
A corresponding noise realization is often called an optimal fluctuation.(34)

In a multi-well case, a relaxational trajectory from an external saddle
may relax into a well different from an initial one. Then an optimal path
qualitatively differs from that one in a single-well case. Some important
results on optimal paths in this case and on action along them were
obtained in ref. 26. However, apart from these results were obtained in a
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different context and by a method different from ours, they provided only
a general type of a solution of the problem for the path while the further
analysis was far not complete and based mostly on intuitive ideas rather
than on a rigorous treatment: just an absence of such treatment gave rise to
the encountered by authors of ref. 26 difficulties at numerical calculations.

In contrast, a complete rigorous analysis of optimal paths and action
along them is provided in the present work which has allowed in particular
to find characteristic nontrivial features of an evolution of a direct escape
rate (such as :13) as friction 1 varies: unlike a conventional quasi-stationary
flux, it may depend on 1 exponentially sharply, moreover, it may undergo
oscillations in the range of small 1 and a cutoff at 1 exceeding certain value
from the moderate-to-high friction range. The results for an escape flux are
generalized for inter-attractor transitions in multi-well stable potentials, as
well as applications to various other problems are discussed.

For a convenience of readers, quite detailed description of a contents
of each section of this quite long paper is provide below.

A short Section 2 has mostly an introductory aim, presenting a general
description of a transition�escape flux in a multi-attractor system by means
of master equations. The only novelty in this section is an introduction of
a splitting procedure allowing to resolve transitions by numbers of returns
from a final state.

The main part of the paper is concentrated in Section 3 which con-
cerns escape�transition rates and related optimal paths in potential systems
driven by a weak white noise and by a linear friction of an arbitrary
magnitude. The sub-section 3.1 provides some very general estimations and
conclusions based on the property of detailed balance. The sub-section 3.2
presents in a general form a solution of the variational problem for the
most probable direct transition path (MPDTP) for an arbitrary potential
U(q) and an arbitrary friction parameter 1. Main results of this sub-section
are equivalent to the results of ref. 26 (obtained by a different method and
in a different context). The central and the largest part of the paper is the
sub-section 3.3: it presents the most interesting and non-trivial results of
the paper. It consists of three parts. In the first part, 3.3.1, I formulate and
prove 4 theorems which cover all possible types of MPDTPs relevant to
the generalized Kramers problem (cf. Fig. 1). The second part, 3.3.2, con-
cerns action S (related to :13) and illustrates its main features at some typi-
cal example, presenting an evolution of action as 1 varies. Finally, in the
third part, 3.3.3, explicit asymptotic expressions for action and MPDTP
are derived for the underdamped range (they describe in particular oscilla-
tions of S(1 )).

Section 4 discusses briefly applications to various problems: inter-well
transition rates in a 3-well stable potential, dynamics of an escape�transition
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flux on time-scales less or of the order of the time of a formation quasi-
equilibrium within an initial well, prehistory problem, optimal control of
fluctuations, fluctuational transport in ratchets, escapes at a periodic driving
and transitions in biased Josephson junctions and ionic channels.

A summary and acknowledgements are presented in Sections 5 and 6

respectively.
Appendix A illustrates the splitting procedure by an explicit description

of higher-order partial probability fluxes in multi-stable systems. Appendix B
describes the reduction of the Euler�Poisson equation for the MPDTP to
some much more simple one. Appendix C analyses a possibility to sew
together different extremals (solutions of the variational problem).
Appendix D deals with the analysis of singularities in the solutions of the
variational problem.

2. PHENOMENOLOGICAL DESCRIPTION OF TRANSITIONS IN
MULTI-STABLE SYSTEMS

Let us consider a dynamical system possessing more than one attractor.
If a weak noise is added then one may formulate a problem of a fluctua-
tional transition from a vicinity of a given initial attractor to a given final
state which, generally speaking, may not belong to a basin of attraction of
the initial attractor. It was shown in ref. 11 in a general form that, on a
large time-scale, such system may be considered as a finite Markov chain
in which an initially populated state corresponds to a given initial attractor
of the dynamical system, a final state corresponds to a given final state
of the transition while other states correspond to other attractors of the
dynamical system. The possibility for this is provided by that fact that a
duration of an optimal fluctuation is exponentially smaller than a waiting
time of such fluctuation. This allows to describe the dynamics in terms of
transition rates and populations of attractors satisfying certain differential
master equations.

For the sake of simplicity and clarity, we shall consider further, unless
otherwise specified, the case when only 3 states are involved: an initial,
final and one intermediate state��i.e., we shall consider a transition either
from one of attractors of a bistable system to a non-attractor, or between
attractors in a system possessing 3 attractors. The generalization to a larger
number of involved attractors is not difficult though the resulting expres-
sions are more cumbersome.

It will be assumed further in this section that rates of direct transitions
between the states, :ij , are known (for potential systems subject to white
noise and linear friction, such rates will be calculated with a logarithmic
accuracy in Section 3).
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2.1. Splitting Procedure and First-Passage Flux

Let us introduce a probability of that the 3-state system being intially
at the state 1 arrives at the state 3 during an infinitesimal interval
[t, t+dt]: dP(1 � 3, t). Equivalently, one may consider a probability flux

J(1 � 3, t)=
dP(1 � 3, t)

dt
(2.1)

The flux can be easily expressed via the populations Wi of the states
and corresponding direct transition rates:

J(1 � 3, t)=:13W1+:23 W2 (2.2)

while the population obey conventional master equations:(35)

dWi

dt
=&Wi :

j{i

:ij+ :
j{i

Wj :ji ,

i, j=1, 2, 3 (2.3)

W1(0)=1, W2(0)=0, W3(0)=0

which can be easily solved.
In the most of applications, a final state of a transition is some attractor

and its vicinity rather than just some point in a phase space of a dynamical
system. In this case, rates of transitions from the final state may be of the
same order or larger than rates of transitions into the final state. Hence, the
flux (2.1) accounts both for those realizations in which the system visits the
final state at a given instant t for the first time and for those ones in which
it already visited this state before t. In many cases, one does need to resolve
such transitions: for example, in the mean first passage time problem, one
needs to account only for first-time transitions into 3 while, in a prehistory
problem, one needs to know the prehistory of the transition, in particular
how many times the system visited the state 3 before to arrive at it at the
instant t. Then, one needs to split the probability flux into the correspond-
ing partial fluxes

J(1 � 3, t)= :
�

n=1

J (n)(1 � 3, t) (2.4)

where J (n)(1 � 3, t) corresponds to such transition at which the system
visited the state 3 (n&1) times before to arrive at it for the n th time at the
instant t.
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In order to be able to calculate J (n)(1 � 3, t) one needs to introduce
partial populations of states 1, 2, and 3, W (n)

1 , W (n)
2 , and W (n)

3 respectively.
Unlike conventional populations, these quantities satisfy the following con-
dition: they account only for such realizations of noise at which the system
entered the final state (i.e., the state 3) before a current instant t n&1
times. Obviously, W (n)

i satisfy the sum relation

Wi= :
�

n=1

W (n)
i (2.5)

I shall consider further in this Section only the most important partial
flux, J (1). Note that, in the generalized Kramers problem, escape flux is
equal to J (1) identically. Thus the consideration below is equally relevant
to stable and to metastable systems (in the latter case, a term ``state 3''
means a state far beyond a metastable part of the system). The higher-
order fluxes in a stable system are considered in the Appendix A.4

The dynamics of the first-order partial populations is governed with
the following master equations:5

dW (1)
1

dt
=&(:12+:13) W (1)

1 +:21 W (1)
2

dW (1)
2

dt
=:12W (1)

1 &(:21+:23) W (1)
2 (2.6)

W (1)
1 (0)=1, W (1)

2 (0)=0

The system (2.6) is solved explicitly:

W9 (1)#\W (1)
1

W (1)
2 +=\:1

:2+ e&t�tl+\1&:1

&:2 + e&t�ts,

:1=(d&:12&:13+:21+:23)�(2d ), :2=:12 �d,
(2.7)

tl=
2

:12+:13+:21+:23&d
, ts=

2
:12+:13+:21+:23+d

,

d#- (:12+:13&:21&:23)2+4:12 :21
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procedure does not lead in this case to new results since the first-passage problem in a
bistable system is equivalent to an escape problem, which was solved before. However the
results for higher-order-passage problems are non-trivial which is also demonstrated in the
Appendix A.

5 The partial population W (1)
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There are two time-scales in W9 (1)(t) which are very different, in many
cases: the short time (ts) corresponds typically (though not always) to an
establishment of a quasistationary distribution between states 1 and 2 while
the long time (tl ) corresponds typically to an escape from the system of
states 1 and 2 on the whole.

Knowing W9 (1), one can obtain all physical quantities which could be
of interest in the first-passage problem.

First of all, it is a flux of first passages, J (1),6

J (1)#:13W (1)
1 +:23W (1)

2 =:13e&t�ts+(:13:1+:23:2)(e&t�tl&e&t�ts) (2.8)

The term :13 exp(&t�ts) dominates at the initial stage while only the
term B exp(&t�tl ) remains in the long-time scale.

It is worth to point out that, at the condition

;#
:13

:13 :1+:23:2

<1 (2.9)

the flux is a non-monotonic function of time: it increases from :13 at t=0
to

Jm=(:13:1+:23:2) _tl

ts
;&

ts �(tl&ts)

\1&(1&;) _t l

ts
(1&;)&

&(tl+ts)�(tl&ts)

+
(2.10)

at

t#tm=
ts

1&ts �tl
ln _ tl

ts
(1&;)& (2.11)

and then decreases to zero as t becomes much larger tl .
If

ts<<t l (2.12)
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which is true in a majority of cases (a quasi-stationary distribution is being
established much quicker than a transition to a final state occurs), then
(2.10), (2.11) are simplified:

Jm=:13:1+:23:2 , tm=ts ln _tl

ts
(1&;)& , ts<<t l (2.13)

In the context of prehistory experiments(34) and optimal control of
fluctuational transitions, (23, 24) it is important to know from which of
attractors most probable the system arrives at a final attractor for the first
time. The ratio of the corresponding integral probabilities

R#
��

0 dt :13W (1)
1

��
0 dt :23 W (1)

2

=
:13(:1 tl+(1&:1) ts)

:23:2(tl&ts)

=
:13(:21+:23) - (:12+:13&:21&:23)2+4:12:21

:23:12(:12+:13+:21+:23)
(2.14)

One more important characteristic of the transition is a mean first
passage time7

MFPT#|
�

0
dt t(:13W (1)

1 +:23W (1)
2 )

=:13(:1t2
l +(1&:1) t2

s )+:23:2(t2
l &t2

s )

=
:12+:21+:23

:21:13+:12:23+:13:23

(2.15)

2.2. Limit Cases

It is useful to analyze three quite typical limit cases.

1.

:13<<:12 , :23<<:21 (2.16)

As a simple illustration, one can bear in mind a potential system
shown in Fig. 2 (cf. also Fig. 4).
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In the case when (2.16) is satisfied,

:1r
:21

:12+:21

, :2r
:12

:12+:21

, tsr
1

:12+:21

, tlr
:12+:21

:21 :13+:12:23

(2.17)

Correspondingly,

Jr:13e&t(:12+:21)+
:21:13+:12:23

:12+:21

(e&t(:21:13+:12 :23)�(:12+:21)&e&t(:12+:21))
(2.18)

The condition (2.12) is obviously satisfied if (2.16) holds true. Corre-
spondingly, if the inequality (2.9), which is very simplified in this limit,

:13<:23 (2.19)

is satisfied then J (1)(t) is non-monotonic: it has a maximum at

tmr
1

:12+:21

ln _ :13(:12+:21)3

(:21:13+:12:23)2& ,

(2.20)

Jmr
:21:13+:12:23

:12+:21

The condition (2.19), providing an increase of J (1)(t) at an initial stage, is
quite clear: if :23>:13 then the flux should increase as the population of
the state 2 grows.

The expression for R, indicating a state from which most probable the
system arrives at a final point, also becomes in the limit (2.16) very simple:

R=
:21:13

:12:23

(2.21)

It is just an established at ttts ratio of populations in 1 and 2 multiplied
by the ratio of the corresponding rates of transitions to 3.

At last,

MFPT=
:12+:21

:21:13+:12:23

rtl (2.22)

2.

:13<<:12 , :21<<:23<<:12 (2.23)
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An illustration of this limit could be a potential system shown in the
Fig. 3(a). In the case when (2.23) is satisfied,

:1r
:21

:12

, :2r1, tsr
1

:12

, t lr
1

:23

(2.24)

Correspondingly,

J (1)
r:13e&:12 t+:23(e&:23 t&e&:12 t) (2.25)

The condition for a non-monotonicity J (1) coincides with (2.19).
The expression for R and MFPT are respectively

Rr
:13

:12

<<1, MFPTr:&1
23 rtl (2.26)

3.

:21<<:23<<:12<<:13 (2.27)

For an example, see Fig. 3(b).
In this case,

:1r
:12:21

:2
13

, :2r
:12

:13

, tsr
1

:13

, tlr
1

:23

(2.28)

Correspondingly,

J (1)
r:13e&:13 t+

:12 :23

:13

(e&:23 t&e&:13 t ) (2.29)

The flux (2.29) monotonically decreases: first, for a short time tts ,
from a large value :13 to a small value :12:23 �:13 , and then, for a long time
ttl , to zero. There is, however, such paradox. From one side, the system
transits to 3 most probable, obviously, via the ``direct'' route (which is
characterized by the short time scale ts):

Rr
:13

:12

>>1 (2.30)

so that one could expect that MFPT is equal to ts . However it is not so:

MFPTr
:12

:13 :23

>>tsr
1

:13

(2.31)
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The physical reason is that, although the probability for a system to
come to 2 before to get into 3 is small (namely :12 �:13), the time which it
spends in 2 is very large (t:&1

23 ), so that the contribution into the MFPT
is larger than that one from realizations corresponding to the direct transi-
tion, notwithstanding an overwhelming probability of the latter. Note also
that MFPT is not equal to tl either.

3. TRANSITION RATES. POTENTIAL SYSTEMS

As it follows from Section 2, a transition problem in a multi-stable
system driven by weak noise can be described in terms of direct transition
rates and, therefore, the most fundamental task for a theory in the context
of a transition problem is to calculate transition rates. We shall consider in
this section such rates in potential systems. But, first, let us review briefly
the concept of large fluctuation in general. With this aim, we write in a
path-integral representation(13) a transition probability density in a space
of dynamical variables:

:tr(x f , t f ; xi , t i)=|
x(ti)=xi

Df (t) P[ f (t)] $(x(t f )&xf ) (3.1)

where xf and xi are respectively final (at t=tf ) and initial (at t=t i) values
of dynamical variables (many-dimensional, generally speaking) while
P[ f (t)] is a functional characterizing a probability density of a given noise
realization f (t). The dependence of P on noise intensity Dnoise is usually of
the activation-like type:(13)

P[ f (t)]=
1
Z

e&S� [ f ]�Dnoise (3.2)

where Z is a normalization factor.
In particular, for a white noise, (13)

S� [ f ]= 1
2 |

t

0
d{ f 2({) (3.3)

Transforming from noise variables to dynamical variables (using
Langevin equations: c.f. for example Eq. (3.6)), we derive

:tr=|
x(tf )=xf

x(ti)=xi

Dx(t) Jf � x(x)
1
Z

e&S�� [x]�Dnoise (3.4)
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where Jf � x is a Jacobian of the transformation [ f � x] while S�� [x(t)]#
S� [ f (t)].

If we consider only a direct transition, i.e., a transition which does not
follow an intermediate attractor8 then it follows from (3.4) that

: (direct)
tr =:pre e&S min

(direct) �Dnoise (3.5)

where S (direct)
min #S�� [xopt(t)] is a minimum of the functional S�� [x] among all

trajectories providing a direct transition while :pre is a preexponential
factor which depends on noise intensity relatively weakly.

A direct transition rate (1.3) and a direct transition probability density
(3.5) are closely related so that activation-like factors in them obviously
coincide. It is usually most important for a theory of a direct transition
rate to determine just the most strong, exponential, factor9 in :tr , i.e., to
find S (direct)

min . The problem for a minimum of a functional is a well defined
mathematical problem. However it is very difficult (in a majority cases
impossible) to obtain its solution in an explicit form while a purely numeri-
cal solution does not allow to come to general conclusions on characteristic
features of solutions and, besides, it consumes a lot of computer time. That
is why each explicit solution is very valuable especially if it reveals non-
trivial features. An important class of systems for which an explicit (or at
least partly explicit) solution of the transition problem is possible are
potential systems subject to linear friction and white noise:

q� +1q* +dU�dq= f (t),
(3.6)

( f (t)) =0, ( f (t) f (t$))=Dnoise $(t&t$), Dnoise#21T

where T has a meaning of temperature.
Apart from that such model has numerous applications in physics,

chemistry, engineering, etc. (see, e.g., refs. 5, 6, and 36), it is distinguished
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unlike :pre in (3.5), a ``preexponential'' factor depends on Dnoise also activation-like because
a system stays in an intermediate attractor during a period whose characteristic duration
depends on Dnoise activation-like so that a portion of trajectories contributing into :tr also
depends on Dnoise activation-like. At the same time, as it has been mentioned in Sections 1
and 2, a transition which follows an intermediate attractor should be described as a succes-
sion of transitions like in a corresponding Markov chain(11) so that such paths are not rele-
vant to direct transition rates.

9 The theoretical problem of a pre-factor is usually yet more complicated than the problem of
an exponential factor. However, allowing for a comparatively weak dependence on noise
intensity, a pre-factor may be put a phenomenological constant in a wide range of transition
rates.



from others by the property of detailed balance.(36) Some general conse-
quences of the detailed balance in potential (generally, multi-well) systems
are analysed below in sub-section 3.1. A reduction of a general variational
problem for a minimal action to some much more simple problem is
presented in sub-section 3.2 while a major part of the paper is concentrated
in sub-section 3.3 which is devoted to an application of general results to
transitions from a stationary attractor and particularly to a generalized
Kramers problem.

3.1. Detailed Balance

Basing on the property of the detailed balance, let us show that transi-
tion rates between states which are not connected by a relaxational trajec-
tory contain a small multiplier, in addition to the conventional factor
exp(&2E�T ) where 2E is a difference between final and initial energies, if
the former is larger than the latter, or zero otherwise.

The property of the detailed balance reads for the system (3.6)(36)

Wst(1) :tr(1 � 2)=Wst(2) :tr(2* � 1*) (3.7)

where Wst is a stationary probability density, which is Gibbsian(36)

Wst B exp \&
E
T + , E=q* 2�2+U(q) (3.8)

:tr(i � j) is a rate for a transition from a state i to a state j, and the star
* means that a conjugate state i* has the same coordinate as i but an
opposite velocity.

In the case when there is a relaxational trajectory from 2* to 1*,
:tr(2* � 1*) is of the order of 1, up to a logarithmic accuracy, because the
noise is not necessary for such transition and the action (3.3) is equal to
zero. Then it follows from (3.7), (3.8) that

:tr(1 � 2)te&[E(2)&E(1)]�T, 2* w�rel 1* (3.9)

It can be shown that a conventional time-reversal of a relaxational
trajectory provides the equality of the action functional S�� �(21 ) just to the
difference of energies, thus indicating that it is just the most probable direct
transition path (cf., e.g., ref. 26).

The Eq. (3.9) is relevant, e.g., to a conventional (single-well) Kramers
problem: states 1 and 2 correspond then to the bottom of the well and to
the top of the barrier respectively.
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If, on the contrary, 2* and 1* are not connected by a relaxational
trajectory then :tr(2* � 1*) is exponentially small (if temperature is small
enough) because some finite noise is necessary in order to get from 2* to
1* and hence the action (3.3) is non-zero:

:tr(2* � 1*)te&2S�T, T<<2S, 2* w�%
rel

1* (3.10)

Then it follows from (3.7), (3.8), (3.10) that

:tr(1 � 2)te&(E(2)&E(1)+2S )�T, T<<2S, 2* w�% 1* (3.11)

Even if we do not know a concrete value 2S, we can carry out a
qualitative (and, partly, even quantitative) analysis based on Eqs. (3.10),
(3.11) and results of Section 2.

Let us consider as an example the problem of a first passage from 1
to 3 in a potential shown in Fig. 2. Within a logarithmic accuracy, it is
equivalent to the problem of a first passage from 1 to S2 .

For the case shown on Fig. 2(a), a noise-free trajectory from S2 goes
into 2. Hence,

:23te&(US2
&U2)�T, :13te&(US2

&U1+2S )�T (3.12)

Allowing also for

:12te&(US1
&U1)�T, :21te&(US1

&U2)�T (3.13)

and for the hierarchy of energies

U2<U1<US1
<US2

, (3.14)

this case corresponds to the limit case (1) considered in Section 2 and
Eqs. (2.16)�(2.22) hold true. In particular,

R=
:21:13

:12:23

te&2S�T<<1, MFPT=
:12+:21

:12:23+:21:13

te&(US2
&U2)�T

(3.15)

S2 w�rel 2

Similarly, for the case shown on Fig. 2(b) which differs from that one
on Fig. 2(a) only by friction so that the relaxational trajectory from S2 goes
into the well 1,

Rte2S�T>>1, MFPTte&(US2
&U2)�T, S2 w�rel 1 (3.16)
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Fig. 2. Energy-coordinate plane. The solid line shows a 3-well potential U(q) (numbers
indicate attractors, dots indicate saddles) while the dashed line shows a relaxational (noise-
free) trajectory emanating from the saddle S2 to the left. Figures (a) and (b) demonstrate a
consequence of the saddle connection S2 w�rel S1 : a switching (as friction varies) of an attrac-
tor from which a direct transition rate is determined by the Arrhenius factor.

Thus, the system chooses in any case the ``easiest'' way��the ``direct''
route if the relaxational trajectory S2 w�rel 1 exists or the ``successive'' route
if it does not��so that, within a logarithmic accuracy, MFPT does not
depend on friction and the ``activation energy'' in the expression for MFPT
is equal in both cases to the energy difference between a top of the highest
barrier and a bottom of the deepest (among 1 and 2) well.
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Fig. 3. Energy-coordinate plane. The solid line shows a 3-well potential U(q) (numbers
indicate attractors, dots indicate saddles) while the dashed line shows a relaxational (noise-
free) trajectory emanating from S1 to the right. Figures (a) and (b) demonstrate a consequence
of the saddle connection S2 w�rel S1 : a switching (as friction varies) of a saddle through which
a fluctuational transition into the attractor 3 occurs if the initially occupied attractor is 1.

The cases shown on Figs. 3(a) and (b), correspond respectively to the
limit cases (2) and (3) in Section 2. The analysis similar to that one for
Fig. 2 shows that, unlike the case (a), MFPT in the case (b) essentially
depends on 2S:

MFPTte(US2
&U2&2S)�T, 2S<US2

&U2 , S1 w�rel 3 (3.17)
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And obviously, in all cases, 2S determines a flux at an ``initial'' (but
still exponentially long) stage. For many other problems, e.g., an optimal
control of fluctuations and a directed diffusion in periodically driven
ratchets (see Section 4), one needs to know, apart from action, the most
probable direct transition path MPDTP. The rest of Section 3 is devoted
to the derivation of the MPDTP and to the calculation action along it.

3.2. General Solution of the Variational Problem

In order to find S (direct)
min for a direct transition between some given

states, i � j, one needs to express f (t) via dynamical variables from (3.6),
to substitute it into the action functional S� [ f ] (3.3) and then to find such
trajectory q(t) which provides a minimum of S[q]#S� [ f ]�(21 ) among all
direct trajectories:

Smin=min(S), S=|
ttr

0
dtL(q, q* , q� ), L=

1
41

(q� +1q* +dU�dq)2

(3.18)

where it is assumed that q(t) does not follow intermediate attractors while

\q(0)
q* (0)+=i, \q(ttr)

q* (ttr)+= j (3.19)

and a duration of the transition ttr should be varied too, in order to mini-
mize S.

The necessary condition for the extremum of a functional is an
equality of its variation to zero. In the case of the functional (3.18), it is
reduced to the Euler�Poisson equation, (37) for q(t) possessing finite
derivatives up to the 4th order:

�L
�q

&
d
dt \

�L
�q* ++

d 2

dt2 \�L
�q� +=0 (3.20)

with the boundary conditions (3.19).
In order to minimize S over ttr one needs to equal the derivative to

zero:

�S
�ttr

=0 (3.21)
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Substituting S (3.18) into (3.21), carrying out an integration by parts twice
and using (3.20), one can derive the equivalent condition:(37)

E� =0, E� #&L+\�L
�q*

&
d
dt \

�L
�q� ++ q* +

�L
�q�

q� (3.22)

Here, E� is analogous to mechanical energy(38) and is conserved at a solu-
tion of (3.20).

Let us seek the solution qopt(t) of the Euler�Poisson equation (3.20)
with boundary conditions (3.19) as a time-reversal of a solution of such
equation

q� +1 $(t) q* +dU�dq=0

\q(0)
q* (0)+= j*, \q(ttr)

q* (ttr)+=i* (3.23)

qopt(t)=q(ttr&t)

where 1 $(t) is so far unknown, a constant ttr is so far arbitrary and will be
determined later from the condition (3.22), and a star * has the same
meaning as in (3.7).

Note that there is no danger to miss a true solution of the variational
problem when we use the representation (3.23). Indeed, assume that we
know a true solution qtrue(t) (with a transition time ttrue). Then, a function
q(t)=qtrue(ttrue&t) satisfies (3.23) if

1 $(t)=&
q� true(ttrue&t)+dU(qtrue(ttrue&t))�dqtrue(ttrue&t)

q* true(ttrue&t)
, ttr=ttrue

(3.24)

so that qopt(t)=qtrue(t), i.e., qtrue(t) is necessarily among solutions of the
type (3.23).

Of course, one could seek a solution of the Euler�Poisson equation
using a different representation but it is just the representation (3.23) which
allows to reduce the complicated 4th-order differential equation (3.20) to a
much more simple equation. Indeed, putting qopt(t) (3.23) into the Euler�
Poisson equation (3.20) with the Lagrange function L (3.18) one can
derive, after some transformations (see the Appendix B),

,
d 2q
dt2 +

1
2

d,
dt

dq
dt

=0, ,#
(1 $)2&12

2
&

d1 $
dt

(3.25)

where q#q(t) is assumed to obey (3.23). The equation (3.25) has solutions
of three types:
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(1) ,=0

(2)
dq
dt

=0 (3.26)

(3) , \dq
dt+

2

=C, C{0

The second type, obviously, does not suit us because it cannot satisfy
the conditions (3.19). The third type is not suitable either: it does not
satisfy the condition for a minimization over a transition time (3.22).
Indeed, if one substitutes into E� (3.22) the Lagrange function L (3.18) with
qopt(t) (3.23) in which 1 $(t) satisfies the equation (3) in (3.26), one obtains
(cf. the derivation Eq. (3.25) in Appendix B)

E� =&
C

21
(3.27)

Thus, in order to satisfy both the Euler�Poisson equation (3.20)
(together with the boundary conditions (3.19)) and the condition of zero
quasi-energy E� (3.22), one needs to choose in (3.26) the equation of the
type (1). This equation can be solved explicitly:

1 $(t)=1
1+Ae1t

1&Ae1t (3.28)

where a constant of integration A should be chosen so that the proper
relaxation j* w�rel A i* (3.23) takes place.10
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10 After the initial version of this paper had been prepared my attention was drawn to
papers(39, 26) in which equations equivalent to (3.23), (3.28) were obtained from the Hamilton
equations corresponding to the Lagrangian L (3.18), in a problem of a nonequilibrium
potential which determined a quasi-stationary distribution (note that, in these papers, the
auxiliary friction is written for a direct rather than time-reverse path so that their A corre-
sponds to my &A exp(1ttr)). Apart from I obtain (3.23), (3.28) by a different method and
in a different context, I advance in many important respects much more far than authors
of refs. 39 and 26: (1) I prove that the type of a solution (3.23), (3.28) is the only type which
can provide an extremum of action, as well as I prove that the MPDTP cannot be sewed
from trajectories of the type (3.23), (3.28) with different A unless they are sewed in sadles
(see Appendix C and the rest of the sub-section), (2) I provide a detailed analysis of an
influence of the singularity in (3.28) at the MPDTP (see Appendix D), (3) unlike refs. 39
and 26, my analysis provides also a description of the MPDTP with a given (rather than
just optimal) duration of the transition (see Eqs. (3.26.3), (3.27) and the item 3 in Section 4,
see also ref. 10), (4) I apply the general solution to the generalized Kramers problem and
provide a detailed rigorous analysis for the corresponding MPDTP and action (see sub-sec-
tion 3.3), (5) I derive explicit expressions for action and the MPDTP in overdamped and
underdamped regimes (see sub-sections 3.3.2 and 3.3.3 respectively), (6) I suggest various
other applications of the general results (see Section 4).



If A<0 then the function 1 $(t) (3.28) has a zero (in which 1 $ changes
its sign) at

t=t0#
1
1

ln \ 1
|A|+ (3.29)

If A>0 then the function 1 $(t) (3.28) has a singularity (a pole of the
first order) at

t=tp#
1
1

ln \ 1
A+ (3.30)

Due to this, a velocity of the auxiliary system (3.23), q* , drops to zero at
t=tp while 1 $ changes its sign.

At any sign of A, 1 $ turns into &1 as t grows to infinity,

1 $(+�)=&1 (3.31)

The next important question is whether an extremal can be ``sewed''
from trajectories of the type (3.23), (3.28) with different A. Such sewing
could seem natural since the Euler�Poisson equation would be satisfied
everywhere except possibly the very sewing point. However it is proved in
Appendix C that such sewing necessarily breaks the equality of the variation
of the functional S (3.18) to zero (which is just a definition of an extremal)
unless the sewing point is either a stationary point of the potential system,

dU�dq=0, q* =0 (3.32)

or a turning point (q* =0) whose coordinate is a coordinate of a discon-
tinuity dU�dq.

Taken that we are interested only by direct transitions, extremals
which include attractors as sewing points are not relevant. For the sake of
brevity, let us call the remaining extremals, i.e., extremals which do not
follow intermediate attractors as direct extremals. A next step is to find that
direct extremal (if it is) along which action is smaller than along any other
direct extremal, i.e., to find the most probable direct transition path
(MPDTP) if it is. The further analysis differs essentially for cases when (1)
neither an initial nor final state of transition is a non-stationary (periodic)
attractor while at least one of them is a stationary point, (2) one of the
states is a periodic attractor, (3) neither of the states is neither a periodic
attractor nor a stationary point. The case (3) is more of a formal rather
than practical interest and will be discussed briefly in the end of this
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sub-section. As concerns a periodic attractor which may exist in a tilted
periodic potential, (36) a nonequilibrium potential (which is closely related
to action) in the presence of such attractor was briefly analyzed in ref. 26.
However the analysis of ref. 26 concentrated on a quasi-stationary distribu-
tion rather than on the transition problem and even that analysis was far
from being complete. Some partial case was analysed numerically and by
Monte-Carlo simulations in ref. 31. A consistent rigorous analysis of the
associated variational problem is planned to be done by me elsewhere.

In the present paper, I shall consider mostly the case when i is a
stationary attractor while j is a saddle: just this case is relevant to an
escape from a multi-well metastable potential, i.e., to the generalized
Kramers problem (cf. Figs. 1, 4), which is the main subject of the present
paper, as well as to inter-attractor transitions in a stable multi-well poten-
tial (it does not matter for an exponential factor whether a final point is an
attractor or a saddle from which a system may relax to this attractor noise-
free).

3.3. Generalized Kramers Problem

For the sake of clarity and brevity, I restrict the analysis to the case
when only two smooth adjacent potential wells are involved (see Fig. 4(a)
as an illustration), namely let the following conditions are satisfied:

(1) a potential function U(q) possesses at least two adjacent
parabolic local minima 1 and 2 and, apart from a local maximum S1

between 1 and 2, there is at least one more adjacent to it local maximum S2 ;

(2) in the energy-coordinate plane E&q, noise-free trajectories
emanating from S1 go either into 1 or into 2 and do not pass above any
local maximum of the curve E=U(q);

(3) (a) if US2
>US1

then the bit S2 O, where O is the nearest to S2

in the direction q(S2) � q(S1) intersection of the horisontal line E=US2

with the curve E=U(q), lies above only one local maximum of the curve
E=U(q), namely S1 ;

(b) if US2
<US1

then the bit S1O, where O is the nearest to S1 in
the direction q(S2) � q(S1) intersection of the horisontal line E=US1

with
the curve E=U(q), does not lie above any local maximum;

(4) the initial state of the transition is 1 while the final one is S2 .

It should be emphasized that Fig. 4(a) is just an illustrating example
while the consideration below is valid also in the case when S2 is adjacent
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Fig. 4. Energy-coordinate (a) and phase (b) planes for the generalized Kramers problem.
Thick solid lines show: (a) a potential curve E=U(q)#0.06(q+1.5)2&cos(q) (potential of
such type describes a r.f. SQUID(40�42)), (b) boundaries of basins of attraction. Dots indicate:
(a) local maxima of the potential (S1 and S2), an intersection O of the horizontal line E=US2

(dash-dotted line) with the potential curve E=U(q), and an intersection I between trajectories
S2 w�rel 2 and 2 ww�A=0 S1 , (b) saddles S1 , S2 . Thin solid�dashed lines show the relaxational (for
1=0.045) trajectories from S1 �S2 : the trajectory from S2 goes to the well 2. Thick dotted�
dashed line corresponds to the auxiliary relaxational trajectory (3.23), (3.28) with A=A+ �
A=A&. At the given 1, the MPDTP 1 � S2 follows first the thin solid line 1 ww�A=0 S1 and
then the dotted line S1 w�

A+ S2 .
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to 1 rather than to 2 as well as when US2
<US1

(but the condition 2 above
is still valid).

A generalization for a larger number of involved attractors is
straightforward. In particular, a case of inter-attractor transitions in a
3-well potential (see Section 4) is immediately reduced to the case con-
sidered in the present sub-section.

3.3.1. Most Probable Direct Transition Path. First of all let
us prove that if S2 belongs to a basin of attraction of 1 then the conven-
tional time-reversal of the relaxational trajectory does provide an absolute
minimum of action. Substituting qopt(t) (3.23) into the action functional
(3.18), we obtain

Smin#Smin(1 � S2)=
1

41 |
ttr

0
dt(1+1 $(t))2 q* 2

opt(ttr&t)

=US2
&U1+

1
41 |

ttr

0
dt(1&1 $(t))2 q* 2

opt(ttr&t) (3.33)

where, at the derivation of the second equality, it has been allowed for

1 $(t) q* 2
opt(ttr&t)=&

dE(qopt(ttr&t))
dt

(3.34)

where E#q* 2�2+U(q) is an energy along the auxiliary relaxational trajec-
tory (3.23).

If we put A=0 into 1 $ (3.28) we provide both a relaxation from S2

just to 1,11 S2 ww�rel A 1, and an equality 1 $ to 1 which obviously provides
the minimal possible action equal just to a difference of energies.

Now, we pass to the most interesting case when the final state S2 does
not belong to a basin of attraction of the initial attractor 1. Let us show
first that the MPDTP 1 � S2 goes necessarily through the saddle12 S1 . Let
us assume that the time-reversal of the MPDTP includes some point B of
the boundary of basin of attraction of 1 which differs from S1 . Then, taken
into account that this point belongs to the basin of attraction of 1 and,
therefore, the time-reversal of the MPDTP 1 � B* is just a relaxational
trajectory B w�rel 1 which, in this case, necessarily follows the saddle S1 , we
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11 Note that q* =0 both in S2 and in 1 so that they coincide with S 2* and 1* respectively.
12 For the sake of brevity, we use here and thereafter a term saddle in relation to S1 (and

analogously, to S2) both in a case of a smooth maximum when it is a true saddle and in
a more formal case of a cusp-like maximum when S1 is even not a stationary point (though,
like a true saddle, it possesses two incoming and two outcoming manifolds).



come to the conclusion that the saddle S1 is definitely followed by the
MPDTP 1 � S2 (cf. also ref. 43).13

Thus, if S2 does not belong to a basin of attraction of 1 the MPDTP
from 1 to S2 consists of two bits:

(1) 1 ww�A=0 S1 , following the conventional time-reversal of the relaxa-
tional path;

(2) from S1 to S2 .

Taken that, for a smooth potential U(q), direct extremals may be
sewed only in saddles while there are no saddles other than S1 and S2 in
our problem, the MPDTP S1 � S2 is definitely a path with a single A,
S1 w�A S2 . The question about a proper choice of A is one of central ques-
tions of the present paper. We need to choose from all direct extremals
S1 � S2 (they have been described in Section 3.2 in a general form and
their number may be infinite) that one which provides a minimum for
action. An algorithm for the choice depends on a satisfaction such 2
conditions:14

Condition 1. A noise-free trajectory S2 w�rel 2 possesses points both
with q<q(S1) and with q>q(S1) (it is equivalent to that the trajectory
passes in the energy-coordinate plane above the saddle S1 at least once:
cf. the thin dashed line in Fig. 4(a)).

Condition 2. A noise-free trajectory S2 w�rel 2 and a trajectory
2 ww�A=0 S1 (which is the time-reversal of S1 w�rel 2) intersect at least once,
apart from the obvious common point 2 (cf. intersections of the thin dashed
and solid lines in Fig. 4(a); note that, in the energy-coordinate plane, any
trajectory overlaps its time-reversal, so that 2 ww�A=0 S1 and S1 w�rel 2 are
presented in Fig. 4(a) by one and the same line).

Correspondingly, any case is described by one of 4 theorems presented
below. For their formulation, it is convenient to introduce the following
definitions.

Definition 1. Let us define a bit of a trajectory as a passage if a
velocity is equal to zero in the beginning and in the end of the bit while it
does not change its sign in between them (e.g., the trajectory shown in
Fig. 4 by the dotted line consists of 2 passages).

634 Soskin

13 In fact, as it follows from the consideration below, S1 is the only point of the boundary of
the basin of attraction of 1 which belongs to the time-reversal of the MPDTP.

14 As 1 varies, a satisfaction of these conditions changes at some critical values which will be
discussed in the next sub-section.



Definition 2. Let us define a point I as the highest in energy inter-
section of the trajectories S2 w�rel 2 and 2 ww�A=0 S1 (cf. Fig. 4(a)).

Definition 3. Let us define A& as such negative value that the
number of passages in S1 w�A& S2 , n& , is equal to a number of passages in
the bit of the noise-free trajectory S2 w�rel I, nrel : n&=nrel.

Definition 4. Let us define A+ as such positive value that the
number of passages in S1 w�

A+ S2 , n+ , is smaller than nrel by one:
n+=nrel&1.

Theorem 1. Let both conditions 1 and 2 be satisfied. Then, the
MPDTP S1 � S2 is either S1 w�A& S2 or S1 w�

A+ S2 while action along the
MPDTP is less than US2

&U2 .

Remark 1. Theorem 1 is relevant typically to small 1: an example is
shown in Fig. 4 (S1 w�A& S2 and S1 w�

A+ S2 are shown by the thick dashed
and dotted lines respectively). Intuitively, the specified in the theorem
choice of extremals is rather clear: as it follows from (3.33), 1 $(t) should
differ from 1 as little as possible��and the above described paths provide
such 1 $ which, on a major part of a path, is only slightly either smaller
(for A&) or larger (for A+) than 1. But the rigorous proof is quite tricky
and uses mainly geometrical arguments.

Proof. Let us first prove that a minimal action is smaller than
US2

&U2 . The conventional successive path S1 w�rel 2 ww�A=0 S2 provides
action equal just to US2

&U2 . Let us construct the path S1 w�rel

I* ww�A=0 S2 . It is a part of S1 w�rel 2 ww�A=0 S2 and, obviously, action along
the latter path exceeds action along the former one. Thus, a minimal action
should be definitely less than US2

&U2 .
As concerns the MPDTP, let us consider separately negative and

positive A.

(a) A<0.

First of all, let us prove an existence of the described above A& .
Consider first a case when the noise-free trajectory S2 w�rel 2 possesses

at least one turning point15 between S1 and 2. If we decrease A continuously
from zero a dissipation of energy along the relaxational trajectory S2 ww�rel A
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15 We use a term turning point in a conventional for a physical literature meaning of a point
on a trajectory where a velocity changes its sign.



decreases continuously so that the highest in energy turning point con-
tinuously moves up in energy and necessarily reaches S1 at some finite |A|,
when the whole path lies above the trajectory S1 w�rel 2 (except the very S1 ,
obviously). And just this A is A& as it follows from the definition A& .

In that case when the trajectory S2 w�rel 2 does not possess any turning
point between S1 and 2, the trajectory S1 w�rel 2 necessarily possesses at least
one turning point to the right from 2 (otherwise the Condition 2 would not
hold true). Then if we decrease A continuously from zero a gain of energy
along the path S1 w�A increases continuously so that the highest in energy
turning point continuously moves up in energy until it meets S2 which will
correspond just to A=A& , by the definition A& (n&=1 in this case).

Let us show that if S1 is a smooth maximum then there are no A<A&

at which S1 w�A S2 could exist. Indeed, in this case, S1 is an unstable
stationary point and the approach of the relaxational trajectory
S2 ww�rel A& S1 towards the saddle S1 occurs infinitely slowly: energy first
decreases to a certain minimal value Emin(A&) (which is slightly less than
US1

) at an instant t0 (3.29) and then starts to increase to US1
. If |A|>|A& |

then the change of the sign 1 occurs too early and energy along the trajec-
tory S2 ww�rel A starts to increase before it reaches the level Emin(A&) so that
the trajectory passes above S1 .

In the case when S1 is a cusp-like maximum, paths S1 w�A S2 with
A<A& may exist. Let us prove that neither of them can be the MPDTP.
Indeed, such path contains less number of passages than n& which means
that the time-reverse to it path inevitably intersects the boundary of basin
of attraction of 1 in some point P1 which is not S1 (cf. the Fig. 4(b)). But
the MPDTP 1 � P1* is the time-reversal of P1 w�rel 1 while the latter just
follows the boundary of attraction 1 (until it meets the saddle S1) rather
than just intersects the boundary. This proves that 1 ww�A=0 S1 ww�A<A& S2

cannot be the MPDTP 1 � S2 .
Let us prove that a path S1 ww�A<0 S2 cannot provide the MPDTP if

|A|<|A& |. Indeed, if we decrease |A| continuosly then 1 $(t) increases for
all t, i.e., a dissipation of energy along the relaxation trajectory S2 ww�rel A

increases too and, hence, the trajectory lowers and necessarily intersects in
some point P the trajectory 2 ww�A=0 S1 . Let A is such that, after one or
more oscillations in the well 2, the trajectory does come into S1 . Let us
construct the path S1 w�rel P* w�A S2 . Action along the bit S1 w�rel P* is
equal to zero while P* w�A S2 is only a part of S1 w�A S2 and action along
the completing part, S1 w�A P*, is definitely non-zero. Thus, action along
S1 w�A S2 is certainly not minimal.

Thus, among all negative A, only A& may provide a minimum of action.

(b) A>0.
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First of all, let us show that A+ exists. Due to the Condition 1,
S2 w�rel 2 does pass in the energy-coordinate plane above S1 . If to increase
A continuously from zero then a dissipation of energy along the trajectory
S2 ww�rel A increases and the trajectory lowers so that it necessarily meets S1

at some A which is just A+ , by the definition A+ .
If A<A+ then the relaxation trajectory first goes into the well 2 and,

at the corresponding instant tp (3.30), the velocity q* drops to zero while
energy drops to some value Emin(A)=U(q(tp))<US1

. As it is shown in
Appendix D, the system goes then ``back in time'' along the same trajectory
by which it arrived at q=q(tp) unless dU�dq=0 at q=q(tp). In the former
case, it cannot arrive at S1 while, in the latter case, i.e., if q(tp)=q(2), it is
not a direct extremal (moreover, action along a path following the attrac-
tor 2 is �US2

&U2).
If A>A+ the number of passages decreases which means that

S2 ww�rel A S1 inevitably intersects the boundary of basin of attraction of 1 in
some point P2 which is not S1 (cf. the Fig. 4(b)) while a trajectory time-
reverse to the MPDTP 1 � P2* should follow the boundary (until it meets S1)
rather than just intersect the boundary.

Thus, among all positive A, only A+ may provide a minimum of action.
Thus, the Theorem 1 has been proved.

Remark 2. It is interesting to notice that if U(q) is smooth in S1

(which is a typical case) then the relaxational trajectory S2 ww�rel A+

approaches S1 at a finite instant of time,16 unlike the trajectory S2 ww�rel A& :
the former trajectory reaches the saddle just at the instant t (+)

p #tp(A+)
(3.30). Indeed, if the transition instant ttr was smaller than t (+)

p then 1 $(t)
would be positive and finite at any t�ttr ��but, at any finite positive fric-
tion, the approach to the saddle should take an infinite period which con-
tradicts to the original assumption that ttr<t (+)

p . On the other hand, if ttr

was larger than t (+)
p then we would also come to a controversy. Indeed, at

the instant t=t (+)
p , the velocity q* must drop to zero. It is shown in the

Appendix D that, unless the coordinate q(t (+)
p ) coincides with a coordinate

of the saddle S1 or of the bottom of the well 2, the trajectory returns along
the same trajectory to S2 and therefore cannot provide the transition
S2 � S1 . But, due to the assumption that ttr>t (+)

p , the saddle S1 cannot be
reached at the instant t (+)

p . The bottom of the well 2 is not suitable either
since a path following 2 cannot be the MPDTP, by the definition of the
MPDTP. Thus, we have again come to a controvercy with the original
assumption and, hence, the transition time is just t (+)

p .
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Remark 3. Let us describe briefly how to find constants A& , A+ .
In an underdamped limit (1 is small in comparison with characteristic
eigenfrequencies), they can be found explicitly which will be done in
Section 3.3.3. In a general case, they have to be found numerically by a trial-
and-error method in which a constant A is being fitted until a relaxation
trajectory (3.23), (3.28) S2 ww�rel A arrives at S1 while the resulting trajectory
S2 ww�rel A S1 consists from nrel or nrel&1 passages, for A& and A+ respec-
tively. This procedure is incomparably easier than a direct numerical solu-
tion of the variational problem (cf. ref. 31) and takes very little of computer
time. A concrete algorithm may vary. E.g., one may use a standard method
of successive approximation starting from the ranges [&1, 0] and [0, 1],
for A& and A+ respectively. A convergence is typically quick.

Theorem 2. Let the Condition 2 be satisfied while the Condition 1
be not. Then the MPDTP S1 � S2 is the path S1 w�

A& S2 while action along
it is <US2

&U2 .

Proof. The proof is nearly identical to that one in the Theorem 1.
The only difference is that there are no direct paths corresponding to
positive A.

Before to pass to two other theorems (whose proof is probably the
most non-trivial part of the paper) let us present qualitative arguments in
favor of that an extremal with a single negative A does not exist at large
enough friction: such arguments will facilitate an understanding the
rigorous proof of Theorems 3 and 4. For the sake of simplicity, let us
consider the most typical case, when U(q) is smooth both in S1 and S2 .
For the overdamped case, a noise-free trajectory emanating from S1 or
S2 follows nearly the very slope (left or right, respectively) of the poten-
tial well 2. A friction 1 $(t) (3.28) varies along the trajectory S2 ww�rel A from
1 at t=&� to &1 at t=�. A transition between these two regimes
occurs for an interval t1&1 and, hence, in order for the trajectory to
manage to come to S1 rather than to pass above it it should manage for
this interval t1&1 to pass from the right slope to the left one. However
such passage (a large part of which takes place in the regime 1 $<<1 )
would require an interval t|&1

osc where |osc is a characteristic frequency of
an eigenoscillation in the well 2. At large enough 1, this time is much
larger than 1&1 and therefore the passage between the different slopes does
not manage to occur which means that an extremal S1 w�A S2 cannot exist
at large enough 1.

Now, let us formulate the Theorem 3 and prove it rigorously.
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Theorem 3. Let neither of the conditions 1 and 2 be satisfied. Then
there is no any direct extremal which would provide the transition, i.e., the
MPDTP does not exist.

Proof. An absence of direct extremals with a positive A is obvious: a
dissipation along a trajectory S2 www�rel A>0 exceeds that one along a noise-
free trajectory so that the trajectory S2 www�rel A>0 cannot reach S1 .

Let us now prove an absence of a path S1 w�A S2 with a negative A. If
such path with some hypothetic negative A=Ah did exist then, for any
negative A with |A|<|Ah |, a dissipation of energy along the relaxational
trajectory S2 ww�rel A should be larger than that one along S2 ww�

rel Ah , so that
the trajectory in energy-coordinate plane would inevitably meet the slope
of U(q) (i.e., the line E=U(q)) below S1 , in other words, the trajectory
would have a turning point somewhere between q(S1) and q(2). In par-
ticular, this would hold true at |A| � 0. At the same time, if |A| � 0 then
a point of minimal energy on the trajectory S2 ww�rel A (corresponding to
t0 (3.29)) approaches the bottom of the well 2 because the trajectory
S2 www�rel A � 0 approaches the noise-free trajectory S2 w�rel at any instant
t<<1&1 ln(1�|A| ) ww�A � 0 �. A potential near 2 may be approximated by a
parabola:

U(q)=
02(q&q(2))2

2
, qrq(2) (3.35)

and an analysis of Eqs. (3.23), (3.28) is simplified. We are to prove that the
trajectory S2 www�rel A � 0 cannot possess a turning point between S1 and 2
which will be equivalent to the proof of a non-existence the path S1 w�

Ah S2 .
This task is still non-trivial as it requires an explicit solution of Eqs. (3.23),
(3.28) while, even for such simple potential as (3.35), the equations are
non-trivial at an arbitrary 1. Instead of their solution, one may return to
the original Euler�Poisson equation (3.20) which is reduced for the case
of a parabolic U(q) to a linear differential equation of the forth order
with constant coefficients and, obviously, is easily solved. However, the
immediate result of such solution is quite inconvenient for the required
proof. That is why a different method is used below: I show that the proof
can be reduced to certain partial case of Eqs. (3.23), (3.28) at which the
equations have a solution in a very convenient for the final proof form.

A noise-free equation of motion in a parabolic potential is merely a
linear differential equation with constant coefficients and is easily solved.(38)

If 1�1min , where

1min=20 (3.36)

639Large Fluctuations in Multiattractor Systems



then the solution does not possess turning points in an infinitesimal vicinity
of the bottom of the well.

In all cases to which the Theorem 3 relates, there is necessarily a small
enough (but nonzero) vicinity of 2 in which noise-free trajectories do not
have any turning point (otherwise the Condition 2 would hold true which,
in its turn, would contradict to the condition of the theorem). Hence, rele-
vant values of 1 are necessarily not less than 1min (3.36).17 If we prove an
absence of turning points between S1 and 2 in S2 www�rel A � 0 for 1=1min it
will garantee the same for any larger 1 because the larger 1 the steeper the
trajectory S2 ww�rel A in the energy-coordinate plane and, all the more so,
there are no turning points between S1 and 2 (a rigorous proof of this will
be given further).

The dynamic equations (3.23), (3.28) for the relaxational trajectory
S2 wwww�rel A � &0 in a close vicinity of 2, for 1=20, can be written as:

d 2q~
d{2 &2 tanh ({)

dq~
d{

+q~ =0
(3.37)

q~ =q&q(2), {=0(t&t0)

where t0 is given in (3.29).
The differential equation (3.37) can be solved explicitly:

q~ ({)=C1 sinh({)+C2({ sinh({)&cosh({)) (3.38)

where the integration constants C1 , C2 can be determined from two addi-
tional conditions.

Let a point r#(qr , q* r) on the trajectory S2 w�rel 2 which is reached at
an instant tr is close to 2 enough for a parabolic approximation to be valid
and for the trajectory not to possess turning points at t�tr . If |A| � 0 the
trajectory S2 ww�rel A approaches S2 w�rel so that a deviation of r from a state
on S2 ww�rel A corresponding to the same moment tr becomes negligible.
Thus, at

{={r#tr&t0 (3.39)

the trajectory (3.38) should pass a state very close to r so that C1 , C2 can
be easily found:
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C1=
q~ r{r cosh({r)&q~4 r({r sinh({r)&cosh({r))

cosh2 ({r)
,

C2=
&q~ r cosh({r)+q~4 r sinh({r)

cosh2 ({r)
, (3.40)

q~ r#qr&q(2), q~4 r#q* r

All close to 2 points of S2 w�rel 2 (including r) necessarily satisfy cer-
tain condition which will be particularly important for the further proof. In
order to derive it let us write down the equation of motion along the noise-
free trajectory S2 w�rel 2 in a vicinity of 2:

d 2q~
d{2 +2

dq~
d{

+q~ =0 (3.41)

in which the same notations as in (3.37) are used. Its solution is

q~ {)=[q~ ({r)+({&{r)(q~4 ({r)+q~ ({r))] e&({&{r ) (3.42)

Differentiating (3.42), we obtain

q~4 ({)=[q~4 ({r)&({&{r)(q~4 ({r)+q~ ({r))] e&({&{r ) (3.43)

from which it follows that in order for a velocity to keep its sign for all
finite {�{r the following condition should be satisfied

q~ ({r)

q~4 ({r)
<&1, q~4 ({r){0 (3.44)

(the dashed lines in Fig. 5(a) correspond to q~ ({r)�q~4 ({r)=&1).
Using (3.44), we show below that a path which possesses a turning

point between S1 and 2 cannot be S2 www�rel A � 0 . It is convenient to consider
separately a case when the turning point is approaching 2 as |A| is
approaching zero and a case when the turning point remains at a finite
distance from q(2) at |A| � 0.

(1) Let a path (3.38) possesses at {={1 a turning point at q~ <0.
Then (3.38) can be written as

q~ ({)=
q~ ({1)

cosh({1)
[({1&{) sinh({)+cosh({)] (3.45)

(an example of such path is shown in Fig. 5(a)).
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Fig. 5. Energy-coordinate plane for a motion in the parabolic potential U(q~ )=q~ 2�2 (solid
line): q~ #q&q(2), E#(dq~ �d{)2�2+U(q~ ). (a) The dashed lines show asymptotic noise-free
trajectories (as well as time-reverse to them trajectories) at 1=20 and, at the same time,
indicate lines q~ �q~ 4 =\1. The dotted line shows an example of a path (3.45) which possesses
a turning point to the left from the bottom of the well (only that part which corresponds to
a motion preceding the turning point is shown since the motion following the turning point
is not relevant). (b) The lines indicating the sewing conditions for 1�(20)=1 (q~ �q~ 4 =\1) and
for 1�(20)=:=1.5>1 (q~ �q~4 =\:) are shown by respectively thick and thin dashed lines.
Examples of paths (3.54) with identical initial conditions but different 1 are shown by dotted
lines: by the thick line for 1�(20)=1 and by the thin one for 1�(20)=:.
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A coordinate-to-velocity ratio along the path is

R#
q~
q~4

=tanh({)+
1

{1&{
(3.46)

The function R({) is monotonously increasing at any {{{1 :

dR
d{

=
1

cosh2 ({)
+

1
({1&{)2>0, {{{1 (3.47)

Allowing for

R(&�)=&1 (3.48)

we may conclude that, at any finite {<{1 (i.e., along that part of the path
which precedes the turning point),

q~
q~4

> &1 (3.49)

The incompatibility of (3.49) with the condition (3.44) proves that the
path (3.45) cannot coincide with the path (3.38), (3.40) and therefore
S2 www�rel A � 0 cannot possess a turning point at an infinitesimal distance to
the left from 2.

(2) Let us show that an assumption that S2 www�rel A � 0 possesses a turn-
ing point between S1 and 2 at some finite distance from 2 leads to a con-
tradiction too. So, let us assume that S2 www�rel A � 0 possesses the above
described turning point h at some {={h :

q~4 ({h)=0, q(S1)&q(2)<q~ ({h)<0, q~ ({h) ww�%
A � 0

0 (3.50)

A parabolic approximation may not be valid near h but, near the
bottom of the well 2, the trajectory should still be approximated by the
path (3.38), (3.40) which should not possess turning points in a vicinity of
the bottom of the well and should be sewed at large positive {#{l together
with the time-reversal of the noise-free trajectory emanating from the
hypothetic turning point h w�rel , similar to the sewing together with S2 w�rel

at large negative {={r . The condition of a sewing with a time-reversal can
be immediately obtained on the basis of the condition (3.44) for a direct
trajectory if to use that fact that a velocity in any point of the time-reversal
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is just opposite to a velocity in the same point of energy-coordinate plane
for the direct trajectory. Thus,

q~ ({l)

q~4 ({l)
>1, q~4 ({l){0 (3.51)

At the same time, it follows from Eq. (3.38)

R#
q~
q~4

=tanh({)&
C2

C1+C2{
(3.52)

The function R({) increases monotonously everywhere except

{#{turn=&
C1

C2

(3.53)

which corresponds to a turning point of q~ ({). Allowing for the absence of
turning points in the vicinity of the bottom of the well (which has been
proved above in 1)), there should be either {turn>{l or {turn<{r . However,
in any of these cases, at least one of the conditions (3.44) and (3.51) is not
satisfied: in the former case, R({r)>&1 while, in the latter case, R({l)<1
(note that if C2=0 then neither (3.44) nor (3.51) are satisfied since
&1<R(t)<1 \t).

This contradiction proves that the assumption (3.50) is wrong.
Together with the proof of an impossibility for S2 www�rel A � 0 to possess a
turning point in the very vicinity of 2 (see 1) above), this proves an absence
of a transition path S1 ww�A<0 S2 at 1=1min (3.36).

Finally, we should prove that, for any larger 1, this is all the more so.
With this aim, let us write down Eqs. (3.23), (3.28) for a case A<0 in the
following form

d 2q
dt~ 2 +1� (t~ )

dq
dt~

+
dU
dq

=0

(3.54)

t~ =t&t0 , 1� (t~ )=&1 tanh \1t~
2 +

An effective friction 1� (t~ ) is positive at t~ <0 and negative at t~ >0 so
that the instant t~ =0 corresponds to a minimal energy on a trajectory, for
any 1. At the same time, the larger 1 the larger |1� (t~ )| and, therefore, the
steeper a trajectory E(q) in the energy-coordinate plane (see Fig. 5(b)).
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If, analogously to the analysis for a case 1�(20)=1, to consider for
1�(20)>1 a case |A| � 0 which can be described in a vicinity of 2 in a
parabolic approximation (3.35) then the corresponding trajectory (3.54)
should be sewed at 0t~ ={r � &� with the noise-free trajectory and at
0t~ ={l � +� with the time-reversal of the noise-free trajectory. It is easy
to derive for a general case 1�20 the conditions similar to (3.44), (3.51):

R({r)#
q~ ({r)

dq~ ({r)�d{r
<&

1
20

�&1, R({l)#
q~ ({l)

dq~ ({l)�d{ l
>

1
20

�1 (3.55)

If 1>20 then the corresponding to (3.55) lines in the E&q~ plane lie
necessarily lower than those ones for a case 1=20 (cf. Fig. 5(b)). At the
same time, as it was shown above, lines corresponding to the trajectory
(3.54) for 1>20 lie necessarily above those for 1=20 (cf. Fig. 5(b)).
Taken that, even at 1=20, at least one of the sewing conditions (3.55)
cannot be satisfied for the path (3.54), it is all the more so at 1>20.

Thus, the Theorem 3 has been proved.

Theorem 4. Let the condition 1 be satisfied while 2 be not. Then
the MPDTP S1 � S2 is the extremal S1 w�A+ S2 .

Remark 4. The case described by the Theorem 4 is not typical but it
may occur if a bottom of the well 2 is shallow while a slope of the well 2
between 2 and S2 becomes rather steep at some distance from the bottom.

Proof. The proof of a non-existence an extremal with a negative A is
identical to that one in the Theorem 3 while the proof concerning an
extremal with A=A+ is identical to that one in the Theorem 1.

Finally, in this sub-section, I shall say very briefly about a problem of
the MPDTP i � j if both i and j are non-stationary points.18 This case has
certain differences from the case when at least one of states is a stationary
point. Thus, the MPDTP may not obligatory follow the saddle S1 . Rather
it may be a path with a single A (rather than with A switching in the
saddle S1 from A=0 to non-zero A). Such transition takes a finite time
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even if a maximum S1 is smooth. In the case A>0, this time is less than
tp (3.30). In fact, most of the above-said in this paragraph concerns also a
transition within one and the same basin of attraction.

3.3.2. Action. The final goal of the variational problem is action
Smin (3.18) which, as it has been found in previous sub-sections, can be
presented in any of two forms (3.33) in which qopt(t) is sewed from trajec-
tories of the type (3.23) with 1 $(t) (3.28) in accordance with the algorithm
described in the previous sub-section. I emphasize that the numerical pro-
cedure is incomparably easier than a direct numerical solution of the varia-
tional problem (cf. ref. 31) and takes typically very little computer time.

In some ranges of friction, action can be found explicitly. Thus, if S2

belongs to a basin of attraction of 1 then the MPDTP 1 � S2 is just the
time-reversal of the relaxational trajectory S2 w�rel 1 while action is just a
difference of energies, US2

&U1 . If S2 does not belong to a basin of attrac-
tion of 1 and friction is much less than characteristic eigenfrequencies, one
can obtain explicit asymptotic formulas for action which will be done in
sub-section 3.3.3. If 1 is slightly less than the upper limit for an existence
of the MPDTP, 10 , then the MPDTP is close to 1 ww�A=0 S1 w�rel 2 ww�A=0 S2

and action is:

Smin(1 � S2)rUS1
&U1+US2

&U2 , 0<10&1<<10 (3.56)

If 1�10 then a direct transition rate :1S2
(as well as :13 in

phenomenological formulas of Section 2) is equal to 0:

:1S2
=0, 1�10 (3.57)

Generally, Smin is to be calculated numerically. For the potential
shown in Fig. 4,

U(q)=0.06(q+1.5)2&cos(q) (3.58)

we plot in Fig. 6 an excess of action over the difference of energies:19

2Smin#Smin(1 � S2)&(US2
&U1)

=
1

41 |
ttr

0
dt(1&1 $(t))2 q* 2

opt(ttr&t) (3.59)

A magnitude of 2Smin varies from20 0 to US1
&U2 . The latter is approached

as 1 approaches the critical value 10 at which a direct path disappears, as
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Fig. 6. A dependence of an excess of action over the difference of energies, for an escape
from 1 to S2 in the potential shown in Fig. 4. The solid line is calculated numerically by (3.59)
in which qopt and 1 $(t) are calculated by the algorithm described in sub-section 3.3.1. The
dotted line shows the explicit underdamped asymptote (3.82), (3.83). The horisontal and
vertical dashed lines indicate respectively the upper limit for 2Smin and the lower limit for 1
at which the MPDTP 1 � S2 does not exist. The inset shows an underdamped range in an
enlarged scale.

described in the Theorem 3, and which is equal in this case (as well as in
a majority of other cases) to a doubled frequency of eigenoscillation in a
bottom of the well 2:

10=20 (3.60)

In the underdamped range, 1<11 , which is described by the
Theorem 1, the dependence 2Smin(1 ) undergoes characteristic oscillations
(the inset shows them in an enlarged scale) which correspond to an alter-
nation of ranges at which S2 belongs to a basin of atraction of 1 with
ranges at which it does not. The ranges are separated by critical values 1n

which correspond to saddle connections S2 w�rel S1 consisting of n passages
(n=1, 2,...). Each oscillation has a cusp-like singularity in its maximum
which corresponds to a jumpwise switch of the MPDTP between paths
corresponding to A+ and A& (cf. a discontinuity in a first derivative of
nonequilibrium potential(26) and a fluctuational separatrix for optimal
paths in a phase space(44, 43)).

The range of moderate friction, 11<1<10 , is described by the
Theorem 2. A major variation of action occurs within just this range: the
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larger 1 the deeper into the well 2 the MPDTP 1 ww�A=0 S1 w�A& S2 falls
and, correspondingly, the larger 2Smin .

3.3.3. Underdamped Regime. The goal of this sub-section is to
derive explicit expressions for action and MPDTP in the case when 1 is
small:

;#
1

min(|osc , | (1)
osc , | (2)

osc)
<<1 (3.61)

where |osc , | (1)
osc , | (2)

osc are characteristic frequencies of eigenoscillation at
energies between saddles and in wells 1 and 2 respectively.

(a) Noise-Free Trajectory. First, it is necessary to derive a formula
for a critical value 1#1n which lies in the underdamped range (3.61) and
provides a saddle connection S2 w�rel S1 with a given number of passages n.
I shall derive also nrel as an explicit function of 1. Integrating the equation
for the energy along the trajectory, (3.34), in which A=0 (i.e., 1 $(t)#1n)
and allowing for a smallness of 1n due to which energy may be considered
as a constant at an integration of the left-hand side (3.34) along one
passage, we obtain for a dissipation of energy along a given mth passage
of a noise-free trajectory:

2Em#Em&Em+1=?1nI(Em), m�n&1 (3.62)

where Em is an energy in the beginning of the passage while I is a mechani-
cal action(38)

I(E )=
1

2? � dq q* , q* =- 2(E&U(q)) (3.63)

For the last (i.e., n th) passage, we obtain similarly:

2En#En&US1
=?1nIk ,

k#
1
2

(3+s(&1)n), (3.64)

s#sgn \ q(2)&q(1)
q(2)&q(S2)+

where I1#I1(US1
) and I2#I2(US1

) are actions (3.63) in wells 1 and 2
respectively.
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Dividing the Eq. (3.62) by ?1nI, applying the resulting equation to the
first n&1 passages, summing up the results, exchanging the summation by
the integration (the latter operation is justified by a smallness of 2Em) and
allowing for (3.64), we derive

1
? |

US2

US1
+?1nIk

dE
1

I(E ) 1n
=n&1 (3.65)

Allowing for

1
? |

US1
+?1nIk

US1

dE
1

I(E ) 1n
r

Ik

I1+I2

=
1

1+(I1 �I2)s(&1)n (3.66)

we derive

1
? |

US2

US1

dE
1

I(E ) 1n
&

1
1+(I1 �I2)s(&1)n =n&1 (3.67)

from which

1n=
2|osc

n&1+1�(1+(I1 �I2)s(&1)n
)
, 2|osc#

1
? |

US2

US1

dE
1

I(E )
,

(3.68)

1n<<min(|osc , | (1)
osc , | (2)

osc))

If

1 # ]12l+(1+s)�2+1 , 12l+(1+s)�2[, l�0 (3.69)

then S2 w�rel goes just to 2 rather than to 1 and a number of passages in
S2 w�rel I is

nrel=2l+1+(1+s)�2 (3.70)

It follows from (3.68)�(3.70) that

nrel=2(n (&)
1 +1)+

1
2

(1&(&1)n1
(+)&n1

(&)

),

(3.71)

n (\)
1 #_1

2 \
2|osc

1
\

1
1+(I2 �I1)s+& , s(&1)nrel=+1
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where the square brackets [...] denote an integer part and the latter
equality chooses those ranges of friction at which S2 w�rel goes just to 2
rather than to 1 (note that, in these ranges, nrel is odd if q(2) is between
q(1) and q(S2) and even otherwise).

(b) Action. Let us find an explicit dependence of action on friction,
in ranges (3.69). The MPDTP necessarily follows S1 . Action along the bit
1 � S1 is equal just to a difference of energies US1

&U1 and, hence, a non-
zero contribution into 2Smin is made only by the bit S1 � S2 . Allowing for
this and using the identity (3.34), we may write (3.59) as

2Smin=
1

41 |
S2

S1

dE
(1&1� $(E ))2

1� $(E )
, S2 w�%

rel
1 (3.72)

where 1� $(E ) is the auxiliary friction 1 $(t) (3.28) expressed as a function of
energy E(t) along the auxiliary relaxational trajectory S2 ww�rel A S1 (3.23),
(3.28).

In order to find 1� $(E ) one needs to find E(t). In a general case of an
arbitrary 1, the function E(t) cannot be found in an explicit form while, in
an underdamped case (3.61), it can be found explicitly in the relevant range
of energies. Indeed, the characteristic timescale on which both 1 $(t) and
E(t) may change significantly is 1&1. Correspondingly, in accordance with
the conventional averaging method, (45) changes of energy on smaller time-
scales are not essential for 1� $(E ) In the underdamped case, 1&1 is much
larger than a characteristic duration of one passage21 which is equal
approximately to half a period of eigenoscillation at an average energy on
the passage. Correspondingly, a change of energy along one passage is
small while the dynamic equation (3.34) (which is obeyed by energy along
the trajectory) may be averaged over a passage or, equivalently, over a
period of eigenoscillation. Thus, averaging the Eq. (3.34) over a passage,
allowing for(2)

q* 2=I| (3.73)

where the overbar means an averaging over an oscillation while I and | are
respectively a mechanical action (3.63) and frequency of eigenoscillation at
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21 In case of smooth maxima S1 and S2 , the present consideration does not cover the very
beginning of a first passage and the very end of a last passage, i.e., the very vicinities of S2

and S1 respectively: their contribution into action is negligible as it will be shown in the end
of the sub-section.



a given energy E, and transforming from E to I (note that dE�dI=|(38)),
we obtain

dI
dt

=&1 $I (3.74)

After the substitution 1 $(t) (3.28), the Eq. (3.74) can be integrated
explicitly:

I=It=0e&� t
0 d{ 1 $({)=It=0e&1t \1&Ae1t

1&A +
2

, It=0#I(US2
) (3.75)

Expressing from (3.28) e1t via 1 $ and substituting it into (3.75), one
obtains

I=I(US2
)

4A
((1 $�1 )2&1)(1&A)2 (3.76)

from which it follows

1 $
1

#
1� $(E )

1
=�1+

I(US2
)

I(E )
4A

(1&A)2 (3.77)

Thus, in order to find 1 $ as a function of energy along the trajectory
we need only to find A. It should be found from that condition that a tra-
jectory S2 ww�rel A goes just to S1 , moreover, a number of passages should be
equal to either nrel (3.71) or nrel&1, for A& and A+ respectively. To find
A\ I use equations analogous to (3.62)�(3.67) which were used in order to
find 1n and nrel (1 ). The only difference is that I put in 1 $(t) A=A\

instead of A=0 and, correspondingly, 1n should be exchanged by 1� $(E )
(3.77) while n should be exchanged by nrel (3.70) or nrel&1, for A& and A+

respectively. Thus, instead of (3.67) for the case A=0, I obtain for A\ the
following equation:

1
? |

US2

US1

dE
1

1 - I(I+4I(US2
)A\ �(1&A\)2)

&
1

1+(I1 �I2)�1

=nrel&
1
2

(3\1) (3.78)

Generally, the integral in (3.78) cannot be found explicitly since I(E )
(3.63) is typically a complicated function which can be presented only in an
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integral form. At the same time, in order to find A\ explicitly we do need
to express the integral as an explicit function of A\ . Fortunately, in the
underdamped case (3.61), one can split the whole variety of U(q) into such
two complementary classes of functions that an approximate value of A+

can be found from (3.78) explicitly for both classes. Obviously, the results
match each other on the ``boundary'' between the classes.

All potentials U(q) are splitted into the two classes by a very simple
condition: whether at least one of wells is deep or not, i.e., whether the
parameter

+#
US2

&US1

US1
&min(U1 , U2)

(3.79)

is small or not.

(1) Let us first consider the case when at least one of wells is deep:22

+<<1 (3.80)

In this case, a variation of I within the region of integration (3.78),
[US1

, US2
], is small and therefore 1� $(E ) may be considered approximately

as a constant, from which it immediately follows that, at 1<11 ,

1� $(E )=1\#1nrel&(1\1)�2 (3.81)

(corresponding to A=A\ respectively) where nrel is given by (3.71) (equiv-
alently, 1\ may be found from (3.68)�(3.70)). Substituting (3.81) into
(3.72), we obtain

2Smin=
US2

&US1

4
min \(1&1+)2

11+

,
(1&1&)2

11& + , 1<11 , +<<1

(3.82)
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22 The case when the well 1 is not deep while 2 is seems to be the most interesting case in the
generalized Kramers problem, both in the underdamped regime and in general: (1) though,
after an escape from 1, the system will most probable slide down into 2, a period of stay
there may be so long that it will exceed a realistic duration of an experiment; thus, the flux
from a metastable part of potential will be formed on the time-scale of such experiment only
by transitions which do not follow 2 and just such transitions possess interesting features
which form the main subject of this paper, (2) the ratio between a maximal magnitude of
oscillations of action (see below) and the Arrhenius factor ( just the difference of energies
US2

&U1) is in this case the largest possible, as it will be shown below, (3) the deeper the
well 2 the larger a range in which action varies as friction varies from small to large values.



Similarly, at 1>11 (A+ does not exist in this range of 1 ),

2Smin=
US2

&US1

4
(1&1&)2

11&

, 1>11 , +<<1 (3.83)

If, apart from the constant (zero-order) term, we took into account in
the Taylor expansion of 1� $(E ) a next term we would obtain corrections to
2Smin (3.82) and (3.83) of the order of +2 and +3�; respectively. Taking
into account that an accuracy of the averaging method is of the order of
; (3.61), the overal inaccuracy of (3.82), (3.83) is

rtmax(;, +2) (3.84)

For the potential (3.58), an asymptote (3.82), (3.83) is shown in Fig. 6
by the dotted line: it well approximates the exact action within the
accuracy (3.84).

In addition, I present explicit expressions for constants A+ , A& which
have an accuracy tmax(;, +) and will be used further in an explicit
formula for the MPDTP:

A\r
1\&1
1\+1

, +<<1 (3.85)

(2) In the case when neither of wells is deep, i.e.,

+-1 (3.86)

the condition of small friction (3.61) is equivalent to the condition of a
large nrel ,

1<<nrelt
|osc

1
ln

US2
&min(U1 , U2)

US1
&min(U1 , U2)

(3.87)

Then, as it is obvious intuitively and will be confirmed by a result,
a deviation of 1� $ from 1 in the relevant range of energies is small so that
|A\| is small too,

|A\|<<1 (3.88)

Correspondingly, we may approximate 1� $�1 (3.77) by the expression

1� $
1

r1+2
I(US2

)

I
A\ , 2

I(US2
)

I
A\<<1 (3.89)

(the latter inequality will be checked after the result for A\ is obtained).
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Similarly, if to expand the integrand in (3.78) into a Taylor series over
A\ and omit all powers higher than the first one then we can easily express
A\ from the resulting approximation of (3.78) as

A\=
1

2I(US2
) 2|$osc {

2|osc

1
&\nrel&1�

1
1+I1 �I2+= ,

(3.90)

2|$osc#
1
? |

US2

US1

dE
1
I2 , nrel>>1

The expression in braces does not exceed 1 and therefore, allowing for
(3.86),

A\ �
1

|osc

I(US1
)

I(US2
)
<<1 (3.91)

Thus, both the condition (3.88) and the inequality in (3.89) are confirmed.
Substituting A\ (3.90) into 1� $ (3.89) and the resulting 1� $ into 2Smin

(3.72), keeping only the lower power of n&1
rel B 1, integrating the resulting

integrand and choosing a minimum between the resulting actions for A&

and A+ , we obtain

2Smin=
?1 2

42|$osc \}
2|osc

1
&nrel+1 }& 1

1+I1 �I2 +
2

, nrel>>1 (3.92)

An inaccuracy of (3.91)

rtmax \;,
;
++ (3.93)

If both the condition of deep wells (3.80) and the condition of large
number of passages (3.87) are satisfied, i.e., if ;<<+<<1 the expressions
for A\ , (3.85) and (3.90), and for action, (3.82) and (3.92), give identical
results up to the leading terms (a relative difference due to higer-order
terms is tmax(n&1

rel , +2)) and this provides a ``bridge'' between the results
for the cases of deep and non-deep wells. Moreover, accuracies of asymp-
totic expressions also can be matched on the boundary between the cases,
namely at

;<<+2<<1 (3.94)

Thus, keeping at the treatment of the case (3.86) a next term in all relevant
Taylor expansions on 1, we derive a more accurate formula for 2Smin :
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2Smin=min(2S (+)
min , 2S (&)

min ), 2S (\)
min #

?1 2

42|$osc
$2

\ \1+3
12|"osc

(2|$osc)2 $\+
$\=

2|osc

1
&nrel+1\

1
1+I1 �I2

, 2|"osc#
1
? |

US2

US1

dE
1
I 3 , nrel>>1

(3.95)

An inaccuracy of (3.95)

rtmax \;,
;2

+2+t; (3.96)

In the case +<<1, in order to keep an inaccuracy on the minimal
possible level (i.e., t;) at any 1 from the underdamped range (3.61) one
may use the formula (3.95) at ;�+2 while the formula (3.82) may be used
at ;-+2.

Finally in this sub-section, let us show that corrections determined by
close vicinities of smooth maxima S1 and S2 are exponentially small in the
underdamped case.

Let us first consider a contribution into action from a bit of a trajectory
S2 ww�

rel A\ S1 close to the upper saddle, S2 . In principle, one could calculate
this contribution explicitly. Indeed, in order to find a time dependence of
energy on the trajectory, we can use the original (i.e., non-averaged) equa-
tion (3.34) for dE�dt while q* in the left-hand side of this equation can be
calculated in the dissipationless approximation in which, besides, the
potential U(q) may be approximated by the inverted parabola,

U(q)r& 1
2 |2

S2
(q&q(S2))2, |q&q(S2)|<<q(S2)&q(S1) (3.97)

However, in comparison with an inaccuracy of the averaging method
(t;), the explicit account of the contribution from the vicinity of S2

makes no sense because the contribution from this region into action is
exponentially small. Indeed, on the first passage, the approximation
(3.73)�(3.77) (based on the averaging method) is valid starting from such
point P on the trajectory that a time of relaxation from this point to the
lower end of the first passage is much less than 1 &1. We may estimate
roughly this time as 1 &1. Then, one can easily show, using the dissipation-
less approximation, that a coordinate of this point is exponentially close to
the saddle:

q(S2)&q(P)t(q(S2)&q(S1)) e&_(|S2
�1 ), _t1 (3.98)
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Correspondingly,

E(S2)&E(P)t(US2
&U2)

1
|S2

e&2_(|S2
�1 ), _t1 (3.99)

Taken that |S2
t|osc , a contribution of the vicinity of S2 into action

is exponentially small and may be omitted within accuracies of formulas
(3.82), (3.92), (3.95).

As concerns the analysis of the contribution from the discussed vicinity
of the lower saddle, S1 , it is more complicated and involves, in particular,
an analysis of the singularity of the trajectory (cf. the Appendix D) but the
ultimate conclusion is the same: the contribution from the vicinity of S1 is
exponentially small and may be omitted.

(c) Most Probable Direct Transition Path. Let us derive an explicit
expression for the MPDTP in the underdamped regime.

If to make in the dynamical equation (3.23) the transformation of
variables from the coordinate-velocity q&q* to action-angle I&� we shall
derive such dynamical equations(46)

I4 =&
1 $
|

q* 2, �4 =|+1 $q*
�q
�I

(3.100)

where

q#q(I, �) (3.101)

is coordinate as a function of a mechanical action and of an angle: it is
periodic on � with a period 2? and its concrete form depends on a concrete
shape of a potential U(q).

The averaging transforms the first of Eqs. (3.100) into the Eq. (3.74)
while the another equation is transformed into

�4 =| (3.102)

The latter equation is readily integrated:

�#�(t)=�0+|
t

0
d{ |(I({)) (3.103)

where I(t) is given in (3.75) while �0 , together with I(US2
), corresponds

nearly to S2 ,

q(I(US2
), �0)rq(S2) (3.104)

(the expression ``nearly S2 '' means here a state P from (3.98), (3.99)).
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Thus, it follows from (3.23), (3.75), (3.103), (3.104) that

qopt(t)rq(I(t&trel), �(t&trel)), 0�t�trel (3.105)

where functions q, I and � are given in the Eqs. (3.101), (3.75), (3.103) and
(3.104) respectively while trel corresponds to a relaxation (3.75) from I(US2

)
to I(US1

):

trel=
1
1

ln
B&- B2&A2

A2 , B#A+
I(US1

)(1&A)2

2I(US2
)

(3.106)

and A is to be chosen between A\ (see (3.85) and (3.90) for cases of deep
and non-deep wells respectively) dependently on which of them provides a
smaller action.

The formula (3.105) describes correctly nearly the whole MPDTP
except the exponentially small vicinities of the saddles.

4. DISCUSSION AND APPLICATIONS

In this section, I discuss briefly a few connected with the present work
items as well as applications whose detailed analysis is supposed to be done
elsewhere.

1. Let us demonstrate how results of Section 3.3 can be immediately
applied to the problem of inter-attractor transitions in a 3-well stable poten-
tial (cf. Figs. 2,3). First of all, we note that MPDTP for a transition attrac-
tor-attractor necessarily follows a saddle from which a system can relax
noise-free to a final attractor, so that the problem is reduced to the transi-
tion attractor-saddle. If the saddle belongs to a basin of attraction of the
attractor then the problem is trivial: the MPDTP is just the time-reversal
of the relaxational trajectory while action is just a difference of energies in
the saddle and in the attractor. If the saddle (let us call it S2) does not
belong to a basin of attraction of the attractor (let us call it 1) then the
problem is closely related to that one considered in Section 3.3 which, in its
turn, is reduced to the transition S1 � S2 . However, in Section 3.3, we con-
sidered only the case when neither of two noise-free trajectories emanating
from S1 reaches a coordinate q(S2). Generally speaking, it may be not so
(if US1

>US2
while friction is small). But, still, the problem is easily reduced

to the case considered in Section 3.3: due to the property of detailed balance,
the MPDTP S1 � S2 is just the time-reversal of the MPDTP S2 � S1 while
if the transition S1 � S2 does not satisfy the above mentioned restriction
then the transition S2 � S1 necessarily satisfies an analogous restriction
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required for it to be described within the case considered in Section 3.3
(results of Section 3.3 for a saddle-saddle transition are applied to the
transition S2 � S1 if to exchange notations: S1 by S2 and vice versa);
corresponding actions differ merely by a factor US1

&US2
.

2. Global bifurcations in a dynamical system (saddle connections)
play a crucial role for various characteristics of fluctuational transitions.
Let us illustrate this for a system which possesses three attractors. Assume
that a basin of attraction of an attractor 1 possesses at a given friction only
one saddle, S1 . If to vary friction the connection to another saddle,
S1 w�rel S2 , occurs at some friction which marks a change of a saddle via
which the escape from an attractor 1 to an attractor 3 takes place (cf.
Fig. 3) and a corresponding switch of the most probable transition route
(MPTR) (cf. R in (2.26) and (2.30)). The connection S1 w�rel S2 leads also
to sharp changes of the flux (cf. (2.25) and (2.29)) and of the mean first
passage time (MFPT ) (cf. (2.26) and (2.31)).23

In potential systems, reverse saddle connections, S2 w�rel S1 , also play
an important role for fluctuational transitions. They mark switches of the
MPTR: the ultimate transition occurs most probable from that potential
well to which the trajectory emanating from S2 relaxes (cf. (3.15) and
(3.16)). They also mark characteristic changes of the initial transition flux
(:13) which is well demonstrated by the inset in Fig. 6: critical values 1n�1

which correspond just to saddle connections S2 w�rel S1 separate ranges
]12m+2 , 12m+1[ in which the MPDTP 1 � S2 is the time-reversal of the
noise-free trajectory S2 w�rel 1 while action is equal just to the difference of
energies US2

&U1 from ranges ]12m+3 , 12m+2[ in which the MPDTP
necessarily follows S1 while action exceeds US2

&U1 . A maximum of each
oscillation corresponds approximately to a largest distance from 1 to the
nearest to it critical value 1n . If to number oscillations from the right then,
as it follows from (3.92), (3.69), (3.68), a magnitude of an m th oscillation
decreases at large m by a quadratic law:

2S (max)
min (m)=

1
m2

?2|2
osc

162|$osc(1+I1 �I2)2 , m>>1 (4.1)

The largest oscillation is the first one from the right, i.e., in the range
]13 , 12[ (cf. Fig. 6) for the case when s=+1, i.e., when q(2) is between
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23 Obviously, a crucial for fluctuational transitions role of saddle connections like those
described above was found before in related problems: see e.g., ref. 47 where, in particular,
a strong sensitivity of a probability of a multi-well jump in a tilted cosine potential to a tilt
when it is close to the threshold for an onset of the running solution has been demonstrated.



q(1) and q(S2) (cf. Fig. 4) or in the range ]12 , 11[ otherwise (i.e., when
s=&1). Its magnitude has the maximal value when a depth of the well 2
is much larger both than a depth of the well 1 and than a difference of
energies in saddles since, just in this case, a relative deviation of friction 1
from the nearest value providing a saddle connection S2 w�rel S1 is the
largest. It is easy to derive from (3.82), (3.81) that

2S (max)
min (m=1)#2Smin(1 (max))=(US2

&US1
)

- a+(1�- a)&2
4

,

a#�1(1&s)�2+1

1(1&s)�2+2

, 1 (max)#- 1(1&s)�2+1 1(1&s)�2+2 , (4.2)

US2
&U2>>US2

&U1

It is interesting to note that 2S (max)
min (m=1) differs drastically for the

cases s=&1 and s=+1. It is demonstrated easier of all for the case

US2
&U2>>US2

&U1>>US2
&US1

(4.3)

when a in (4.2) can be found explicitly: a=3 if s=&1 and ar1+I2 �I1

>>1 if s=+1. Correspondingly,

2S (max)
min (m=1)r(US2

&US1
) {0.077

0.25 - I2 �I1 -1
at s=&1
at s=+1

(4.4)

At small enough temperatures, oscillations of action lead to exponen-
tially strong oscillations of an initial flux. Note however that, in the case
s=&1, required for this temperatures should be very small, as obvious
from (4.4), while, in the case s=+1, the first oscillation is much stronger
and if I2 �I1 is large enough then 2S (max)

min (m=1) may be much larger than
the Arrhenius factor US2

&U1 so that the oscillation of an initial flux is
huge at any temperature from the relevant for the Kramers problem range
T<<US2

&U1 .
As concerns the case s=&1, a major variation of action occurs

(monotonously) in the range [11 , 10]: 2Smin varies from 0 to US1
&U2

(see Fig. 6) and, if (4.3) holds, the variation of action is much larger both
than the Arrhenius factor and than the first oscillation (4.4).

I emphasise that, since the Kramers paper, (2) all works on the escape
from a metastable potential (or on transition rates in a stable potential)
considered only power-like dependences of the escape rate (flux) on
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friction,24 while we have demonstrated that, in a multi-well metastable
potential, the dependence of the initial flux on friction is exponentially
strong, including in particular exponentially strong oscillations.

Unlike potential systems, in non-potential or periodically-driven
systems, switches of MPTRs and sharp changes in a flux and MFPT
should not, generally, be associated with saddle connections S2 w�rel S1 : the
detailed balance does not hold in such systems(36) so that most probable
fluctuational paths are no longer associated with time-reverse relaxational
paths and, hence, bifurcations of the latter do not give rise to bifurcations
of the fluctuational paths. Preliminary results for periodically driven zero-
dispersion(46, 48, 49) systems do confirm this:(50) a trajectory time-reverse to
MPDTP in this multi-attractor system intersects a boundary of a basin of
attraction of an initial attractor in a point which is not S1 , so that saddle
connections S2 w�rel S1 may not lead to bifurcations of MPDTPs (but
reverse connections, S1 w�rel S2 , are still relevant).

3. One more item which I did not touch so far but which should be
discussed, at least briefly, concerns most probable transition paths with a
given (rather than optimal) time of the transition. Such paths may be
necessary for example for a calculation of a flux from any (both single- and
multi-well) metastable potential at the very initial stage (before the quasi-
stationarity within the initial well is formed). They are necessary also for a
calculation of tails of a prehistory probability density.(34, 51) In ref. 51, such
paths25 within one well of the overdamped double-well Duffing oscillator
were considered numerically. I note that the method described in the
Section 3.3 can provide more explicit (rather than purely numerical) solu-
tions of the Euler�Poisson equations, in much more general case: for an
arbitrary potential and an arbitrary friction. With this aim, one should
choose the type (3) of the solution (3.26) of the Euler�Poisson equation,
unlike most probable direct transition paths considered in the present
paper which correspond to the type (1) in (3.26). Indeed, if a time of the
transition is fixed by us the minimization of action over a transition time
(3.21) is not to be done and the condition (3.22), for a zero quasienergy,
is no longer valid. In order to provide a given transition time it is necessary
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24 To the best of my knowledge, there was only one work, (47) (reproduced also in the
review(6)), in which some indirect and inexplicit evidence of a strong dependence of transi-
tion rates in a multi-well potential on friction was contained. However that work considered
(by the method very different from mine) only some very particular case: an underdamped
motion in a slightly tilted cosine potential close to the threshold for an onset of the running
solution. And even for that particular case, the resulting expressions for rates of multi-well
jumps were not analysed in details, while the Kramers problem for an escape from a multi-
well metastable potential was not considered at all.

25 They are called nonstationary optimal paths in ref. 51.



to fit an integration constant C in the solution (3) in (3.26). The realization
of this program has been started in ref. 10, which has allowed to discover
that, at time-scales smaller than the duration of the optimal fluctuation, the
escape flux grows with time in a step-wise manner if friction is small or
moderate.

4. One more promising application of the results of the present paper
is an optimal control of fluctuations. As it was shown in ref. 23, a deter-
ministic field which is to be applied in order for either to enhance or to
suppress a given fluctuational transition optimally can be expressed explicitly
via the most probable transition path at the absence of an optimal field, at
quite general conditions. The papers(23, 24) dealed with transitions within
one and the same basin of attraction (more exactly, from an attractor to
a saddle). The general approach of the present paper based on master
equations describing multiple returns between attractors in a multi-attrac-
tor system may provide a generalization of the methods of refs. 23 and 24
for a case of multi-attractor systems. Besides, the exact solution of the
variational problem in a multi-well potential system may be directly used
in order to find the optimal field in such system.

5. The next item which I shall discuss in this section concerns a
noise-induced unidirectional motion in periodic potentials.(17�22) The effect
was originally considered for potentials asymmetric within the period
(``ratchets'').(17�20) It may arise also in symmetric potentials (e.g., ref. 21)
and in periodically driven systems which lack spatio-temporal sym-
metry.(22) If a periodic potential has more than one well within the period
then the consideration should be similar to that one which was developed
in this paper, using master equations governing a dynamics of first-order
conditional populations of wells within one period of the potential. This
could be especially relevant to the resonant directed diffusion in non-
adiabatically driven zero-dispersion systems. It was found recently(22) that
the directed diffusion in periodic potentials driven by a non-adiabatic peri-
odic force was enhanced significantly if the frequency of the force was close
to the frequency of eigenoscillation in the potential at such energy which
corresponds to the minimal absolute value of the derivative on energy
|d|(E )�dE |. It obviously follows from results of ref. 22 that the most strong
enhancement should be expected for zero-dispersion systems: in such
systems, |d|(E )�dE | possesses a zero(s) at some energy(ies).(46, 48, 49) Peri-
odic potentials which possess the zero-dispersion property have typically
two or more barriers of different heights within each period(46, 52) and, thus,
the analysis of the directed diffusion in such systems would need a use of
the master equations.
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6. Results of Section 3 for the most probable transition path may be
important for the escape problem in periodically driven multi-well poten-
tials. Consider, for example, the periodic potential in Fig. 7. At an absence
of the driving, an escape from each well to an adjacent period occurs most
probable via the nearest high barrier (since a relaxation trajectory from
the top of a higher barrier goes into just adjacent wells, in our particular
example). Generalizing the results(22) (cf. Eqs. (6) and (7) in ref. 22), one
may conclude that action along the MPDTP to any of barriers decreases
at a driving by a periodic force F cos(0t) (F>0) by the factor

&2S#F |/(0)|>0, /(0)=|
�

&�
dt ei0t 1+1 $(t)

21
q* (t) (4.5)

where q(t) and 1 $(t) are described by (3.23), (3.28) with A corresponding
to each particular MPDTP. Values 2S differ for different MPDTPs and,
generally, the sign of the difference between those corresponding to the
transition to the nearest high barrier and to the far one may turn out
opposite to the sign of the corresponding difference in the absence of the
driving. For example, in the case shown on Fig. 7, it certainly occurs if
0<<1: 2S is larger for that MPDTP which provides a transition to the

Fig. 7. An example of a symmetric periodic potential (solid line) with more than one well
within a period. Dashed lines show relaxational trajectories from higher barriers (indicated by
dots). An escape to an adjacent period occurs most probable, for this concrete example, via
the nearest high barrier, following the time-reversal of the relaxational trajectory. If to apply
a periodic force the most probable escape path may switch to the ``more far'' high barrier,
thus, changing the direction of an initial noise-induced flux for the opposite one.
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more far high barrier (cf. ref. 22) while, in the absence of the driving, action
along this MPDTP is larger than along the another one, due to the
absence of a relaxational trajectory. Correspondingly, at some critical value
of the amplitude of the driving force, Fc two effects exactly compensate
each other and the optimal path changes jump-wise: for F>Fc , the escape
occurs via the more far high barrier, unlike the undriven case, and in order
to calculate its probability one should use results of Section 3 of the present
paper.

7. Finally, I would like to draw readers' attention to possible
applications of results of the paper to two important objects described as
potential systems. One of them is a biased Josephson junction, (40) which is
described by a ``washboard'' potential.(36) This system was investigated by
many authors. In particular, a stationary distribution (which accounts for
escape rates both from the running regime and from the locked one) was
investigated numerically in ref. 26 using the formulas equivalent to our
(3.23), (3.28) (note also the explicit expressions for the escape rates in
``underdamped and low-bias'' case(47, 53) and expressions in quadratures
(though quite complicated) for transition rates in the underdamped case
with the tilt close to the threshold for an onset of the resistive state, (47) as
well as various numerical studies(54, 55, 31, 36)). However the problem for the
transition (rather than escape) rates at arbitrary friction and bias was not
considered and results of Section 3 can be used for this (see also the discus-
sion above). Note also that the developed here method (slightly modified
for the application to this problem) could provide an easy and reliable
numerical procedure for a calculation of transition rates from the running
solution (as well as the associated ``nonequilibrium potential''(26)) while the
authors of ref. 26 reported an instability and non-reliability of numerical
results obtained by their method.

The another important relevant application concerns ionic chan-
nels.(56, 57) Motion of ions in channels may be described in some cases(57)

as an underdamped motion in a multi-well potential so that results of the
paper may be relevant to this system.

5. SUMMARY

1. There has been introduced (see Section 2) a splitting procedure for
a phenomenological treatment of inter-attractor transitions in a multi-
attractor system driven by a weak noise: an integral fluctuational transition
flux is splitted into partial ones corresponding to different numbers of
returns from a final attractor which may occur before an ultimate transi-
tion at a given instant. Such splitting allows to describe a dynamics of
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first-passage and prehistory problems by certain master equations whose
solutions in terms of direct inter-attractor transition rates :ij are found
explicitly. Examples have been analysed and a non-triviality of some of
results has been demonstrated.

2. The classical Kramers problem for the escape from a metastable
single potential well has been generalized for a case of a multi-well meta-
stable potential. If friction does not exceed certain limit a dynamics of the
escape is described by means of master equations mentioned above and has
more than one exponentially long time-scale, unlike the conventional case.(2)

At the smallest of these time-scales, a system transits from an initial well 1
directly (i.e., not following intermediate attractors) to the vicinity of that
saddle S2 from which it can leave a metastable part of the potential noise-
free. Thus, the escape flux at this stage is determined by a transition rate :1S2

.
If S2 does not belong to a basin of attraction of 1 (cf. Fig. 4) then such

transition cannot be described by the conventional time-reversal of the
relaxational path because the corresponding relaxational path just does not
exist: S2 �%

rel
1. In order to find the most probable direct transition path

(MPDTP) 1 � S2 and action along it (the latter determines with a loga-
rithmic accuracy a transition rate :1S2

) I have found direct extremals of the
variational problem for an extremum of action, i.e., extremals which do not
follow intermediate attractors (see Section 3.2). The solution is valid for an
arbitrary potential and an arbitrary friction parameter. It may consist either
of a single bit of certain type (see below) or of bits of this type sewed
together in saddles while each bit is the time-reversal of the auxiliary
relaxational trajectory (3.23) corresponding to a time-dependent friction
(3.28) in which a constant A is to be chosen in such a way that the relaxa-
tion from an end of the bit to its beginning is provided.

The described above type of a single bit in the MPDTP is equivalent
to that one obtained in ref. 26 by a different method and in a different con-
text. But in order to find the MPDTP it is particularly important to know
how to choose among an infinite number of direct extremals just that one
which provides a minimal among them action. Authors of ref. 26 considered
the latter problem only for one specific potential, namely a tilted cosine
potential. Moreover their choice of a proper extremal was based mostly on
intuitive arguments.

In contrast with ref. 26, I provide a complete rigorous analysis of the
discussed above transition 1 � S2 when just two wells of arbitrary forms
are involved (the number of wells is restricted by us to two just for the sake
of clarity and brevity while a generalization to a larger number of wells is
straightforward). First, the MPDTP follows a conventional escape path
from an initial attractor 1 to a saddle of its basin of attraction, S1 , i.e.,
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the time-reversal of the noise-free trajectory S1 w�rel 1. The main problem
was to find the bit of the MPDTP between saddles, S1 � S2 . All possible
cases are covered by Theorems 1�4 in Section 3.3.1. A typical MPDTP is
shown in Fig. 4. The Theorem 3 states that if friction is not less than cer-
tain critical value 10 (which is typically equal to a doubled frequency of
eigenoscillation in the bottom of the well 2) then the MPDTP S1 � S2 does
not exist at all, i.e., :1S2

=0 in this case.
A calculation of action Smin along the MPDTP is provided by a simple

numerical procedure which is incomparably easier than a purely numerical
solution of the variational problem for a minimum of the action functional
(cf. ref. 31) and, besides, our procedure provides a true solution for certain
while the latter procedure as well as a purely numerical search of the con-
stant A in (3.28) may miss an absolute minimum.

Thus, I have found with a logarithmic accuracy a complete solution of
the generalized Kramers problem in all ranges of friction (which have been
distinctly separated). Unlike most of previous works on the escape from a
metastable potential, in which only a power-like dependence on friction
was found (note the footnote 24), it has been demonstrated in the present
paper that, in the case of a multi-well metastable potential, the dependence
on friction can be exponentially strong, at small enough temperature.

3. In the underdamped range, both, the MPDTP and Smin have been
found explicitly for an arbitrary potential (see sub-section 3.3.3, cf. also an
asymptote in Fig. 6).

4. Generally, global bifurcations in dynamical systems (saddle connec-
tions) drastically influence fluctuational transitions, at a weak noise added,
especially in potential systems. At small enough temperature, this gives rise,
in particular, to the characteristic exponentially strong oscillations of an
initial flux from a multi-well metastable potential as a friction parameter
varies (see an example in the inset in Fig. 6, see also the item 2 in Section 4).
Maxima of oscillations are cusp-like which corresponds to a jump-wise
switch of the MPDTP (cf. a line of discontinuity for a non-equilibrium
potential(26) and a fluctuational separatrix for optimal paths(44, 43)).

5. Results for the Kramers problem, listed in items 2�4 above, can be
easily generalized for the problem of inter-attractor transition rates in a
stable multi-well potential system (see the item 1 in Section 4 for the case
of 3-well potential).

6. I have sketched applications to various other problems: short-time
dynamics of large fluctuations, prehistory probability density, optimal
control of fluctuations, noise-induced transport in ratchets, escapes in a
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multi-well potential at a periodic driving and interattractor transitions in
biased Josephson junctions and ionic channels.

APPENDIX A

The master equations which govern partial populations of the nth
order for the transition 1 � 3 (i.e., such populations which account only for
those realizations of noise at which the system being initially at 1 visited 3
before a current instant n&1 times) are the following at n�2,

dW (n)
1

dt
=&(:12+:13) W (n)

1 +:21W (n)
2 +:31W (n)

3 ,

dW (n)
2

dt
=:12W (n)

1 &(:21+:23) W (n)
2 +:32W (n)

3 ,

(A.1)
dW (n)

3

dt
=&(:31+:32) W (n)

3 +J (n&1),

W (n)
i (0)=0, i=1, 2, 3

where the flux of the (n&1)st order

J (n&1)#:13W (n&1)
1 +:23 W (n&1)

2 (A.2)

is assumed to be some known function of time (see below).
The equation for W (n)

3 is separated and easily solved:

W (n)
3 (t)=|

t

0
d{ J (n&1)({) e&(:31+:32)(t&{) (A.3)

Substituting (A.3) into (A.1), we obtain for W (n)
1 and W (n)

2 a closed
system of two linear inhomogeneous 1st-order differential equations whose
solution, with the account of the initial conditions (A.1), is the following:

W9 (n)#\W (n)
1

W (n)
2 +=W9 (n)

l +W9 (n)
s

W9 (n)
l, s =

(k(s, l ):31&:32) \ 1
k(l, s)+

k(s, l )&k(l, s) |
t

0
d{ e&(t&{)�tl, s |

{

0
d{$ e&({&{$)�t3J (n&1)({$)

k(l, s)=
&t&1

l, s +:12+:13

:21

, t3=(:31+:32)&1, (A.4)

where tl , ts are defined in (2.7).
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Taken that J (1) is given by (2.8), W9 (n) and J (n) can be found explicitly
for any n�2 by the successive application of formulas (A.4) and (A.2),
integrating explicitly at each successive step exponential terms in the
integrand. For example,

J (2)=J (2)
l +J (2)

s ,
(A.5)

J (2)
l, s =

(:13+:23k(l, s))(:31k (s, l )&:32)
k (s, l )&k(l, s) {cl, s

1
t&1

3 &t&1
l, s

__te&t�tl, s&
1

t&1
l, s &t&1

3

(e&t�t3&e&t�tl, s)&
+cs, l

1
t&1

3 &t&1
s, l _

1
t&1

l, s &t&1
s, l

(e&t�ts, l&e&t�tl, s)

&
1

t&1
l, s &t&1

3

(e&t�t3&e&t�tl, s)&=
cl=:13:1+:23:2 , cs=:13&cl

where :1, 2 are defined in (2.7).
Two most essential differences of higher-order partial fluxes from J (1)

are the following:

(1) J (n�2)(0)=0 while J (1)(0)=:13 (J (n�2) B t2 at small t);

(2) an additional time-scale t3 is present in the dynamics of J (n�2)(t),
due to that an escape from the final state of the transition, 3, is involved,
unlike the case of J (1)(t); for example, if t3>>tl, s then just higher-order
fluxes prevail over the first-order one, at ttt3 .

In order to demonstrate more clearly a non-triviality of the above
method let us consider briefly the simplest multi-stable system��the system
with just 2 states. Introducing direct transition rates :12 , :21 , conditional
populations W (n)

1, 2 and partial fluxes for the transition 1 � 2

J (n)(1 � 2, t)#:12W (n)
1 (A.6)

we can write for them the following master equations:

dW (1)
1

dt
=&:12W (1)

1 , W (1)
1 (0)=1 (A.7)
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dW (n)
1

dt
=&:12W (n)

1 +:21W (n)
2 ,

dW (n)
2

dt
=&:21W (n)

2 +:12W (n&1)
1 (A.8)

W (n)
1 (0)=W (n)

2 (0)=0, n�2

The solution of (A.7) is a well-known result

W (1)
1 (t)=e&:12 t (A.9)

It corresponds to the flux

J (1)(t)=:12e&:12 t (A.10)

Obviously, the flux (A.10) coincides with the conventional result for
the flux in the escape problem.(2) At the same time, the case n>1 was not
considered before, to the best of my knowledge. The solution of (A.8) is

W (n)
1 (t)=:12:21 |

t

0
d{ |

{

0
d{$ e:12({&t)+:21({$&{) W (n&1)

1 ({$) (A.11)

Using the solution (A.9) for W (1)
1 , substituting it into (A.11), performing

the integration, and then repeating this as many times as necessary, one
can obtain an explicit expression for any order of W (n)

1 and therefore for
the corresponding flux (A.6). For example, at :12{:21 ,

J (2)(t)=:21 \ :12

:12&:21+
2

(e&:21 t+e&:12 t(t(:21&:12)&1)) (A.12)

E.g., if :21<<:12 , then J (2) significantly exceeds J (1) already at t>:&1
12 _

ln(:12 �:21) which reflects that fact that the state 1 is nearly depleted at this
time-scale and the only possibility for a system to be in 1 may be for an
account of rare returns from 2.

APPENDIX B

I shall derive in this Appendix the Eq. (3.25).
First of all, let us write down explicitly the partial derivatives of L

(3.18), with qopt(t) as an argument:
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�L
�q� }qopt (t)

=
1

21 \q� opt+1q* opt+
dU(qopt)

dqopt +
�L
�q* }qopt (t)

=1
�L
�q� }qopt (t)

(B.1)

�L
�q }qopt (t)

=
d 2U(qopt)

dq2
opt

�L
�q� } qopt (t)

Let us put (B.1) into the Euler�Poisson equation (3.20), exchange the
``blind'' time variable t for ttr&t, use the definition of qopt(t) (3.23), i.e.,
exchange qopt(ttr&t) for q(t) (3.23), and take into account after this the
symbolic relation

d
d(ttr&t)

#&
d
dt

(B.2)

Then we shall derive

d 2U(q)
dq2 '+1

d'
dt

+
d 2'
dt2 =0

(B.3)

'#
d 2q
dt2 &1

dq
dt

+
dU(q)

dq

where q#q(t) satisfies the equation of motion (3.23).
Allowing for the Eq. (3.23) for q, the identity in (B.3) can be written

as

'#&(1+1 $(t))
dq
dt

(B.4)

Substituting (B.4) into the equation for ' in (B.3), allowing for

d 2U(q)
dq2

dq
dt

=
d
dt \

dU(q)
dq + (B.5)

and using (3.23) again, we obtain

\(1 $(t))2&1 2&2
d1 $(t)

dt + d 2q
dt2 +\1 $(t)

d1 $(t)
dt

&
d 21 $(t)

dt2 + dq
dt

=0 (B.6)

Carrying out the differentiation of , in (3.25) explicitly, one obtains
the equation identical to (B.6).
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APPENDIX C

The goal of this Appendix is to study a possibility to sew together
different ``single-A'' extremals. Let us consider the functional (3.18) and
assume that there is an extremal (i.e., a trajectory providing an extremum
of the functional) qe(t) which is sewed in some intermediate point of the
phase space (qin , q* in) from trajectories of the type (3.23), (3.28) with dif-
ferent A. By the definition, qe(t) must satisfy the condition of the equality
to zero of the variation of the functional:

$S=0, $S#|
ttr

0
dt _�L

�q
$q+

�L
�q*

$q* +
�L
�q�

$q� & (C.1)

Let us divide the whole interval of integration in the integral (C.1) for
three parts:

$S=|
tin&2t

0
} } } +|

tin+2t

tin&2t
} } } +|

ttr

tin+2t
} } } (C.2)

where t in corresponds to the intermediate point (qe(tin)=qin , q* e(t in)=q* in)
while 2t is some arbitrary small interval. If to repeat for the first and third
integrals the same procedure as is conventionally used(37) at the derivation
of the Euler�Poisson equation (3.20) (i.e., to carry out an integration by
parts twice) and to take into account that the Euler�Poisson equation is
satisfied for (3.23), (3.28) everywhere except possibly tin we shall obtain:26

$S=_�L
�q�

$q* +\�L
�q*

&
d
dt \

�L
�q� ++ $q&} tin&2t

+|
tin+2t

tin&2t
} } } &_�L

�q�
$q* +\�L

�q*
&

d
dt \

�L
�q� ++ $q&} tin+2t

(C.3)

If to make 2t infinitesimal the integral in (C.3) vanishes. Allowing also
for that qe(t), q* e(t) should be continuous everywhere (otherwise a random
force (3.6) would become infinite), i.e.,

$q| tin&2t=$q|qtin+2t#$q in,
(C.4)

$q* | tin&2t=$q* |qtin+2t#$q* in , 2t � 0
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we derive

$S=$q* in _�L
�q� } tin&2t

&
�L
�q� } tin+2t&

+$qin _�L
�q* } tin&2t

&
�L
�q* } tin+2t

+
d
dt \

�L
�q� +} tin+2t

&
d
dt \

�L
�q� +} tin&2t& (C.5)

Coordinate and velocity are varied here independently. Hence the
variation $S is identically equal to zero only if the expressions in the square
brackets are equal to zero. With the account of that the following equalities
are satisfied on the extremal,

�L
�q�

=
1

21
(1+1 $(ttr&t)) q* e(t),

�L
�q*

=1
�L
�q�

(C.6)

and allowing for the continuity of q* e(t), the condition for the equality to
zero of the expressions in square brackets in (C.5) can be written as

[1 $(ttr&tin+2t)&1 $(ttr&t in&2t)] q* e(t in)=0

[14 $(ttr&tin+2t)&14 $(ttr&t in&2t)] q* e(t in)
(C.7)

+(1+1 $(ttr&tin&2t)) q� e(tin+2t)

&(1+1 $(ttr&tin+2t)) q� e(tin&2t)=0

By the original assumption, the values of A in 1 $ (3.28) are different
at t in&2t and at tin+2t, which means that

1 $(ttr&tin+2t){1 $(ttr&tin&2t) (C.8)

Then, the first condition in (C.7) can be written as

q* e(t in)=0 (C.9)

If dU�dq is continious then it follows from (C.9), (3.23) and from the
continuity qe(t) that q� e(t) is continuous in tin as well:

q� e(t in&2t)=q� e(tin+2t)#q� e(tin) (C.10)

If 1 $(ttr&tin&2t) and 1 $(ttr&tin+2t) are finite then, with the
account of (C.8)�(C.10), the second of the conditions (C.7) is equivalent to

q� e(t in)=0 (C.11)
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With the account of (3.23), conditions (C.9), (C.11) are equivalent
to (3.32).

For that case when, at least for one of sewed extremals, 1 $ turns into
infinity in the sewing point (cf. Appendix D) then even a satisfaction (C.11)
may not provide an equality of the variation $S to zero. However, it is
shown in Section 3.3.1 that, for a transition from an attractor corre-
sponding to a a bottom of one of wells to a state which does not belong
to its basin of attraction, an extremal which provides an absolute minimum
of action necessarily follows the saddle of the basin. Thus, in this case, the
MPDTP is necessarily sewed in the saddle from ``single-A'' extremals with
different A.

APPENDIX D

The trajectory (3.23), (3.28) is analysed below in the context of an
existence the pole tp (3.30) (correspondingly, A will be assumed positive
unless it is specified otherwise).

Let us recon a time from tp :

{#t&tp (D.1)

Then, (3.28) and (3.23) can be written respectively as

1� ({)#1 $(t)=1
1+e1{

1&e1{ , (D.2)

q~� +1� ({) q~4 +dU(q~ )�dq~ =0, q~ ({)#q(t) (D.3)

It is easy to see that

1� (&{)=&1� ({) (D.4)

If to denote

q~ &({)#q~ (&{) (D.5)

we shall obtain for q~ &({), with the account of (D.4), the same equation as
for q~ ({) (i.e., (D.3)). Thus, if the initial conditions coincide, i.e., if

q~ &(0)=q~ (0), q~4 &(0)=q~* (0) (D.6)
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and if the equation (D.3) with such initial conditions has a unique solution
then the trajectory for positive { is just the time-reversal of that one for
negative {

q~ ({)=q~ (&{) (D.7)

The condition (D.6) is satisfied only if

q~4 (0)=0 (D.8)

The condition (D.8) is obviously satisfied27 because, otherwise, q~4 and
q~� would diverge at {=0, taking into account that 1� ({) diverges at {=0:

1� ({)r&
2
{

, |{|<<
1
1

(D.9)

As concerns the uniqueness of the solution, it depends on whether
q(tp) is a stationary point of the original dynamic equation (with a true 1 )
or not. Let us consider these cases separately.

(1)

dU
dq } q~ (0)

{0 (D.10)

Let us expand the velocity into the Taylor series,

q~4 ({)=:1{+a2{2+ } } } (D.11)

and substitute it into the Eq. (D.3).28 Then, keeping the leading order in {,
we obtain

a1=
dU
dq }q~ (0)

(D.12)

The higher-order coefficients in (D.11) can be easily (and uniquely)
found using (D.3), (D.9)�(D.12) as well as higher-order terms in the Taylor
expansion of {1� ({).
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27 Note that the consideration similar to (D.1)�(D.6) is valid for negative A too if to change
tp by t0 (3.29). However, the condition (D.6) is not satisfied for negative A unless, inciden-
tally, t0 corresponds to a turning point. Thus, typically, the trajectory does not follow ``back
in time,'' at negative A.

28 Strictly speaking, one could try also an expansion q~ 4 ({)=b({)(a1{+a2 {2+ } } } ) where b({)
is a non-analytic function such that {b({) � 0 at { � 0 (e.g., b({)=ln({)). But it is easy to
show that the Eq. (D.3) cannot then be satisfied.



Thus, the trajectory is uniquely defined if (D.10) holds and, therefore,
(D.7) holds true in this case too.

It is interesting to note also that the direction from which the system
(D.3) arrives at the turning point (q~ (0), q~4 (0)=0) depends only on a sign
of dU�dq|q~ (0) . Thus, if the latter is negative while q(t=0)>q(tp) then the
trajectory should necessarily have at least one more turning point before
(i.e., at t<tp), in which a velocity changes the negative sign for the positive
one.

(2)

dU
dq } q~ (0)

=0 (D.13)

At small {, we may omit then the term dU�dq in the Eq. (D.3) (which
will be confirmed by the result) and obtain the closed equation for dq~ �d{
which is easily integrated:

dq~
d{

=C exp \&| d{ 1� ({)+ (D.14)

where C is an arbitrary constant.
With the account of (D.9),

dq~
d{

rC{2 (D.15)

Correspondingly,

q~ ({)r
1
2C{3 (D.16)

from which the validity of the omission of the term dU�dq in (D.3) in the
case (D.13) follows.

Taken that C is arbitrary, there is an infinite number of trajectories
which satisfy both the equation of motion (D.3) and the initial conditions
(D.8), (D.13). It follows from this, in particular, that (D.7) may not hold
true.

It is interesting also that, at any non-zero C, the trajectory (D.16)
approaches q~ (0) (or departs from it) for a finite time.
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